• Title/Summary/Keyword: Oxygen Welding

Search Result 85, Processing Time 0.021 seconds

A Study on the strength improvement in weldment by the impact loading (충격하중에 의한 용접구조물의 강도 증가에 관한 연구)

  • 양영수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • It is well known that during the oxygen cutting process residual thermal stresses are produced in weldment. The local non-uniform heating and subsequent cooling which takes place during any welding process causes complex thermal strains and stresses to finally lead to residual stresses exceed to the yield stress. High tensile stresses combined with applied structural load in the region near the welded joint can given rise to distortion brittle fracture change of the fatigue strength and stress corrosion cracking. The appropriate treatment of the welded component which reduces the peak of he welding residual stresses is believed to lower risk of the fracture during the service of the structure. In this study the impact loading in oxygen cutting frame was applied to reduce the residual stress. After applying the impact loading redistribution of resid-ual stress was measured by cutting method and the effect of fatigue was tested.

  • PDF

Evaluation of Fracture Toughness($J_{IC}$) on 304 Stainless Steel Weldments Artificially Degraded under SCC Environment (SCC 분위기 하에서 장시간 인공열화된 304 스테인리스강 용접부의 파괴인성($J_{IC}$)평가)

  • 김성우;배동호;조선영;김철한
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.76-83
    • /
    • 1999
  • Fracture toughness({TEX}$J_{IC}${/TEX}) on 304 austenitic stainless steel weldments artificially degraded for long period under SCC environments were evaluated to investigate its reliability and environmental characteristics. Electro-chemical polarization tests were previously carried out to evaluate corrosion susceptiblility of weldment, and stress corrosion cracking was tested under various conditions of 3.5wt.% NaCl solution, the temperature of $25^{\circ}$C and $95^{\circ}$C, and oxygen concentration during 3000hours. From the results obtained, it was found that 304 stainless steel weldment was so susceptible under high temperature and high oxygen concentration of 3.5wt.% NaCl solution, and fracture toughness({TEX}$J_{IC}${/TEX}) was also considerably reduced by material degradation.

  • PDF

Lab Weldability of Pure Titanium by Nd:YAG Laser (Nd:YAG 레이저를 이용한 순티타늄판의 겹치기 용접성)

  • Kim, Jong-Do;Kwak, Myung-Sub
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.315-322
    • /
    • 2008
  • Titanium and its alloys have excellent corrosion resistance, high strength to weight ratios and creep properties in high temperature, which make them using many various fields of application. Especially, pure titanium, which has outstanding resistance for the stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion, brings out to the best material for the heat exchanger, ballast tank, desalination facilities, and so on. Responding to these needs, welding processes for titanium are also being used GTAW, GMAW, PAW, EBW, LBW, resistance welding and diffusion bonding, etc. However, titanium is very active and highly susceptible to embrittlement by oxygen, nitrogen, hydrogen and carbon at high temperature, so it needs to shield the weld metal from the air and these gases during welding by non-active gas. In this study, it was possible to get sound beads without humping and spatter with a decrease of peak power according to increase of pulse width, change of welding speed and overlap rate for heat input control, and shield conditions at pulsed laser welding of titanium plates for Lap welding.

Process Optimization for the Laser Cutting of Cold Rolled STS Sheet (냉연 스테인리스강판의 레이저 절단 특성)

  • 이기호;김기철
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.59-68
    • /
    • 1996
  • This study was aimed to characterize the laser cutting process for the cold rolled stainless steel sheet. The principal process parameters of the cutting process were applied to both the continuous wave form and the pulsed wave form for the laser output mode. The laser-oxygen cutting process and the laser-nitrogen cutting process were also considered to characterize the quality and efficiency of the cutting process. The laser-oxygen cutting process revealed the better productivity than the laser-nitrogen cutting process, since the laser energy and the exothermic oxidation energy exerted on the laser-oxygen cutting process simultaneously during the entire cutting process. However, the straightness of the cutting section, which was considered as the most important factors, was inferior to that of the laser-nitrogen cutting process due to the formation of chromum oxide on the cutting surface. Frequency and duration of the pulsed wave form act as the main factors for the better quality, When the frequency increased from 100 Hz to 200 Hz and the duty increased from 20% to 40%, the quality factors such as the height of dross and the surface roughness were improved remarkably. The increase in the frequency from 200 Hz to 300 Hz, on the other hand, revealed the less effective in the cutting quality.

  • PDF

Optimization of HVOF Spray Parameters for $Cr_3C_2 - 7wt%NiCr$ Coating Powder by Experimental Design Method (실험계획법에 의한 $Cr_3C_2 - 7wt%NiCr$ 용사분말의 HVOF 용사변수 최적화)

  • 김병희;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.125-134
    • /
    • 1997
  • This study was conducted by L9 orthogonal array to obtain optimum spray parameters for This study was conducted by L9 orthogonal array to obtain optimum spray parameters for $Cr_3C_2 - 7wt%$(80wt%Ni-20wt%Cr) coating powder. The factors were hydrogen flow rate, oxygen flow rate, gun-to-work distance, powder feed rate. And evaluation methods for the coating were surface roughness, oxygen concentration, micro-hardness, pore size and distribution, low angle ($30^{\circ}$) erosion rate, and microstructure of coating. The optimum HVOF spray conditions were proved as follows : hydroen flow rate ; 681 SLPM, oxygen flow rate ; 215 SLPM $H^2/O^2 ratio= 3.16), gun-to-work distance ; 22cm, powder feed rate; 25g/min. The hardness (Hv300) was 1147 and the erosion rate ($30^{\circ}$degree) was $3.16\times10^{-4}$g/g. It is believed that the optimized spray conditions can be improved the wear-resistance and anti-erosion characteristics of the coating.

  • PDF

A Study on the Generating feature of Hydrogen Oxygen Gas Using Current Controlled Pulse Power Supply (전류제어형 펄스전원장치를 이용한 수산화 가스 발생 특성 연구)

  • Yang S. H.;Kang B. H.;Jun Y. S.;Mok H. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.257-262
    • /
    • 2002
  • Water-Electrolyzed gas is a mixed gas has the constant volume ratio 2 1 Hydrogen and Oxygen gained from electrolyzed water, and it has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for existing gas welding equipment. So nowdays many studies of Water-Electrolyzed gas are progressed, and commercially used as a source of thermal energy for gas welding in the industry. For Water-Electrolyzed Source, it was used diode rectifier or SCR rectifier for get DC source. This method which is not looking to improve a source for impossible current control or voltage and limited control intervals. In this paper, it was relized and designed In source of pulse type for complementing existing - DC source type, also by experiment it was acquired producting characteristics of Hydrogen -Oxygen Gas through feature of source

  • PDF

Development of hydrogen-oxygen mixed gas torch for joining of vacuum glazing (진공유리 접합을 위한 수소-산소 혼합가스 토치 개발)

  • Hwang, Soon-Ho;Lee, Young-Lim;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3074-3079
    • /
    • 2009
  • Efficient energy use becomes necessary since energy consumption has dramatically been increasing due to continuous economic development and population growth. In particular, high efficient vacuum glazing needs to be introduced to buildings where enormous energy loss occurs through windows and has been rarely used yet due to its high price and performance. Therefore, in this study, torch for glass welding was developed with CFD(Computational Fluid Dynamics) and experiments. Torch shape, nozzle diameter, nozzle arrangement etc. were mainly optimized and hydrogen-oxygen mixed gas fuels the torch. Finally, glass welding with the developed torch has been successful, showing that it can be used to develop economic vacuum glazing.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(II) - Welding Properties of Butt Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(II) - 맞대기 용접 특성 -)

  • Kim, Jong-Do;Kwak, Myung-Sub;Song, Moo-Keun;Park, Seung-Ha
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.68-73
    • /
    • 2009
  • Recently, as titanium and titanium alloys are being increasingly used in wide areas, there are on-going researches to obtain high quality weld zone. In particular, growing interest is being drawn to laser welding, which involves low heat input and large aspect ratio in various welding processes and can facilitate shield in atmospheric condition compared with electron beam welding. The first report covered the analysis of embrittlement by the bead color of weld zone through quantitative analysis of oxygen and nitrogen and measurement of hardness as basic experiment to apply laser welding to titanium. Results indicated that the element that affect embrittlement the most was nitrogen, and as embrittlement and oxygenation go on, bead color changed to silver, gold, brown, blue and gray. This study performed butt welding of pure titanium and STS304 by using 1kW CW Nd:YAG laser, and to find out basic physical properties, evaluated welding performance by laser output, welding speed, root gap and misalignment etc, and examined mechanical properties through tensile stress and Erichsen test. The reason particles of pure titanium welded metal and HAZ are greater than STS304 is because they are pure metal and do not include many impure elements that work as nuclei in case of resolidification, thus becoming coarse columnar crystals eventually. In addition, the reason STS304 requires more energy during welding than pure titanium is because the particle size of base metal is smaller.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 -)

  • Kim, Jong-Do;Kil, Byung-Lea;Kwak, Myung-Sub;Song, Moo-Keun
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.