• Title/Summary/Keyword: Oxygen Precipitation

Search Result 167, Processing Time 0.027 seconds

A Study on the Recharge Characteristics of Groundwater in the Jeju Samdasoo Watershed Using Stable Water Isotope Data (안정동위원소를 이용한 제주삼다수 유역의 지하수 함양 특성 연구)

  • Shin, Youngsung;Kim, Taehyeong;Moon, Suhyung;Yun, Seong-Taek;Moon, Dukchul;Han, Heejoo;Kang, Kyounggu
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.25-36
    • /
    • 2021
  • This study evaluated monthly, seasonal and altitudinal changes of oxygen and hydrogen isotope compositions of wet precipitation samples (n = 238) that were collected for last four years from 7 altitudes (from 265 to 1,500 m above sea level) in the Jeju Samdasoo watershed at the southeastern part of Jeju island, in order to examine the recharge characteristics of groundwater that is pumped out for the production of the Samdasoo drinking mineral water. Precipitation samples showed a clear seasonal change of O-H isotopic composition as follow, due to the different air masses and relative humidity: 𝛿D = 7.3𝛿18O + 11.3 (R2 = 0.76) in the wet season (June to September), while 𝛿D = 7.9𝛿18O + 9.5 (R2 = 0.91) in the dry season (October to May). In contrast, the stable isotope compositions of groundwater were nearly constant throughout the year and did not show a distinct monthly or seasonal change, implying the well-mixing of infiltrated water during and after its recharge. An altitudinal effect of the oxygen isotope compositions of precipitation was also remarkable with the decrease of -0.19‰ (R2 = 0.91) with the elevation increase by 100 m. Based on the observed altitudinal change, the minimum altitude of groundwater recharge was estimated as 1,200 m above the sea level in the Jeju Samdasoo watershed.

A High-resolution Study of Isotopic Compositions of Precipitation (고해상도 강우동위원소변동에 대한 연구)

  • Lee, Jeonghoon;Kim, Songyi;Han, Yeongcheol;Na, Un-Sung;Oh, Yoon Seok;Kim, Young-Hee;Kim, Hyerin;Ham, Ji-Young;Choi, Hye-Bin;Koh, Dong-Chan
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.371-377
    • /
    • 2015
  • Isotopic compositions of precipitation have been used to understand moisture transport in the atmosphere and interactions between precipitation and groundwater. Isotopic compositions of speleothems and ice cores, so called, ''paleoarchives'', can be utilized to interpret climate of the past and global circulation models (GCMs). The GCMs are able to explain the paleoarchives, can be validated by the precipitation isotopes. The developments of stable isotope analyzers make high-resolution isotopic studies feasible. Therefore, a high-resolution study of precipitation isotopes is needed. For this study, precipitation samples were collected for every 5 to 15 minutes, depending on precipitation rates, using an auto-sampler for precipitation isotopes near coastal area. The isotopic compositions of precipitation range from -5.7‰ (-40.1‰) to -10.8‰ (-74.3‰) for oxygen (hydrogen). The slope of ${\delta}^{18}O-{\delta}D$ diagram for the whole period is 6.8, but that of each storm is 5.1, 4.2, 7.9 and 7.7, respectively. It indicates that evaporation occurred during the first two storms, while the latter two storm did not experience any evaporation. The isotopic fractionations of precipitation has significant implications for the water cycle and high-resolution data of precipitation isotopes will be needed for the future studies.

토양수채수기를 이용한 제주도 지하수의 함양특성 연구

  • 이광식;이동림;김용제;박원배
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.231-234
    • /
    • 2003
  • Using lysimeter, oxygen and hydrogen isotopic compositions of soil waters were monitored at a test site of Jeju university during November 2002 to June 2003. Oxygen and hydrogen isotopic compositions of soil waters were found to reflect those of precipitation of the study area. Based on d-values, apparent residence times of about 2 and 4 months were found for infiltration of water through the soil layer to depths of 30 cm and 60cm, respectively.

  • PDF

Interaction between Oxygens and Secondary Defects Induced in Silicon by High Energy $B^+$Ion Implantation and Two-Step Annealing

  • Yoon, Sahng-Hyun;Jeon, Joon-Hyung;Kim, Kwang-Tea;Kim, Hyun-Hoo;Park, Chul-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.185-186
    • /
    • 2005
  • Intrinsic gettering is usually used to improve wafer quality which is an important factor for reliable ULSI devices. The two-step annealing method was adopted in order to investigate interactions between oxygens and secondary defects during oxygen precipitation process in lightly and heavily boron doped silicon wafers with high energy $^{11}B^+$ ion implantation. Secondary defects were inspected nearby the projected range by high resolution transmission electron microscopy. Oxygen pileup was measured in the vicinity of the projected range by secondary ion mass spectrometry for heavily boron doped silicon wafers.

  • PDF

Old Water Contributions to a Granitic Watershed, Dorim-cheon, Seoul

  • Kim, Hyerin;Cho, Sung-Hyun;Lee, Dongguen;Jung, Youn-Young;Kim, Young-Hee;Koh, Dong-Chan;Lee, Jeonghoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • It is reported that the intensity of rainfall will likely increase, on average, over the world on 2000. For water resources security, many studies for flow paths from rainfall or snowmelt to subsurface have been conducted. In Korea, few isotopic studies for characterizations of flow path have been undertaken. For a better understanding of how water derived from atmosphere moves to subsurface and from subsurface to stream, an analysis of precipitation and stream water using oxygen-18 and deuterium isotopes in a small watershed, Dorim-cheon, Seoul, was conducted with high resolution data. Variations of oxygen-18 in precipitation greater than 10‰ (δ18Omax = −1.21‰, δ18Omin = −11.23) were observed. Isotopic compositions of old water (groundwater) assumed as the stream water collected in advance were −8.98‰ and −61.85‰ for oxygen and hydrogen, respectively. Using a two-component mixing model, hydrograph separation of the stream water in Dorim-cheon was conducted based on weighted mean value of δ18O. As a result, except of instant dominance of rainfall, contribution of old water was dominant during the study period. On average, 71.3% of the old water and 28.7% of rainfall contributed to the stream water. The results show that even in the small watershed, which is covered with thin soil layer in granite mountain region, the stream water is considerably influenced by old water inflow rather than rainfall.

Fabrication Characteristics and Electrochemical Studies of SOFC Unit Cell using ScSZ-based Electrolyte Powder prepared by Co-precipitation Synthesis (공침법에 의한 고체산화물연료전지용 ScSZ계 전해질의 제조공정 특성 및 전기화학적 평가)

  • Kang, Ju Hee;Lee, Ho Jae;Kim, Ho-Sung;Jeong, Jong Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.138.2-138.2
    • /
    • 2010
  • Scandium-doped zirconium, ScSZ-based electrolyte, provides higher oxygen conductivity than YSZ and nano-based electrolyte materials are ideal for fabricating thin film electrolyte membrane of SOFC unit cell. Moreover, it may be applied to anode and cathode as well as electrolyte as ionic conductor. In this report, nano-based ScSZ-based electrolyte powder was prepared by co-precipitation synthesis. The particle size, surface area and morphology of the powder were observed by SEM and BET. Thin film electrolyte of under $10{\mu}m$ was fabricated by tape casting and co-firing using the synthesized ScSZ-based powders, and ionic conductivity and gas permeability of electrolyte film were evaluated. Finally, the SOFC unit cell was fabricated using the anode-supported electrolyte prepared by a tape casting method and co-sintering. Electrochemical evaluations of the SOFC unit cell, including measurements such as power density and impedance, were performed and analyzed.

  • PDF

WO3 Fabrication and Thermal Spray Coating of WC-Co using Recycled Ammonium Paratungstate (APT) (재활용 APT를 이용한 WO3 제조와 WC-Co 의 용사코팅)

  • Chung, J. K.;Kim, S. J.;On, J. H.;Moon, H. S.;Pee, J. H.;Ha, T. K.;Park, S. Y.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.287-292
    • /
    • 2015
  • The possibility of chemical precipitation for recycled ammonium paratungstate (APT) was studied. WO3 particles were synthesized by chemical precipitation method using a 1:2 weight ratio of APT:DI-water. At the 500℃ sintering temperature, the X-ray diffraction results showed that APT completely decomposed to WO3. For the granulated powder WC-Co, vacuum heat treatment at proper temperatures increases tap density and flow-ability. Hardness of the WC-Co thermal spray coating layer was measured in the range HV 831~1266. Spray conditions for the best characteristic values were an oxygen flow rate=1500 scfh, a fuel flow rate = 5.25gph and a gun distance = 320mm.

Verification of Core/Shell Structure of Poly(glycidyl methacrylate-co-divinyl benzene) Microspheres

  • Jin, Jeong-Min;Choi, Jin-Young;Lee, Kang-Seok;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.339-345
    • /
    • 2009
  • The core/shell type structure of the highly crosslinked poly(glycidylmetharylate-co-divinylbenzene) microspheres prepared in the precipitation polymerization in acetonitrile was thoroughly verified by means of swelling, $^1H$ NMR, XPS, TEM and TGA measurements. In the XPS measurement, the higher the GMA content, the higher the oxygen content was observed, implying that the higher content of GMA is observed in the particle surface. The further verification of the core/shell structure of the poly(GMA-co-DVB) particles was carried out using $^1H$ NMR and TEM techniques, resulting in the poly(GMA-co-DVB) particles with the GMA rich-phase and DVB rich-phase. In overall, the poly(GMA-co-DVB) microspheres consist of a highly crosslinked DVB rich-phase in the core and slightly or non-crosslinked GMA rich-phase in the shell part due to the different reaction ratios between two monomers and self-crosslinking density of DVB.

Synthesis of Non-Noble Metal Catalysts for Oxygen Evolution Reaction by Co-Precipitation (공침법을 이용한 비 귀금속 산소 발생 반응 촉매의 합성)

  • Jang, Myeong-Je;Won, Mi-So;Lee, Gyu-Hwan;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.68.1-68.1
    • /
    • 2017
  • 수소에너지의 무한한 가능성이 주목됨에 따라 과전압이 높은 산소 발생 촉매의 효율 향상 및 제작비용의 절감은 중요한 문제가 되어왔다. 백금계 촉매는 높은 효율과 낮은 과전압을 가지고 있지만 적은 매장량과 비싼 가격으로 수전해의 상용화에 큰 장애물이 되어왔다. 전이 금속 산화물 촉매는 가격이 저렴하고 형상과 크기 등에 따라 백금계 촉매에 비등한 성능을 발휘할 수 있다. 본 발표에서는 산소발생을 위한 촉매로서 Cu와 Co를 co-precipitation법을 이용하여 $Cu_xCo_{(3-x)}O_4$를 제작하고 이를 셀, 스택에 적용한 방법을 소개한다. 본문에서는 용액의 pH를 다르게 합성하여 Cu와 Co의 비율을 변화시켜 형상, 결정성을 조절할 수 있었고, 이러한 다른 조건에서 산소 발생 성능의 변화를 측정하였다. 최종적으로 최적의 성능을 나타내는 산소 발생 촉매를 셀 및 스택에 적용하여 실제적인 성능을 측정하였다.

  • PDF

Relationship between Physico-Chemical Factors and Chlorophyll-$a$ Concentration in Surface Water of Masan Bay: Bi-Daily Monitoring Data (마산만 표층수에서 물리-화학적 수질요인과 엽록소-$a$ 농도 사이의 관계: 격일 관측 자료)

  • Jung, Seung-Won;Lim, Dhong-Il;Shin, Hyeon-Ho;Jeong, Do-Hyun;Roh, Youn-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • In order to investigate water quality factors controlling chlorophyll-$a$ concentrations, the by-daily monitoring was conducted from February to November 2010 in 4 stations of Masan Bay. Seasonal variability in physico-chemical factors was mainly controlled by freshwater loading as a result of precipitation: chemical oxygen demand, suspended solids and nutrient concentrations rapidly increase during the heavy rainy season, whereas they decrease in the dry season. From late winter to mid spring, phosphorus and silica sources relative to Redfield ratio were probably functioned as limiting factor for phytoplankton flourishing in surface waters, but nitrogen concentration during mid-spring to autumn might be responsible for the increase of phytoplankton biomass. The multiple regression analysis revealed that variations in chlorophyll-$a$ concentration may be strongly correlated with changes of water temperature, chemical oxygen demand, dissolved inorganic phosphorus in spring, and salinity, chemical oxygen demand and precipitation in summer. Consequently, in the Masan Bay, a heavy rainfall event is an important factor to determine changes of biotic and abiotic factors, and in addition the dynamics of chlorophyll-$a$ concentration are strongly affected by changes of hydrological factors, especially water temperature, precipitation and nutrients.