• Title/Summary/Keyword: Oxygen Precipitation

Search Result 166, Processing Time 0.022 seconds

Precipitation of Manganese in the p-Xylene Oxidation with Oxygen-Enriched Gas in Liquid Phase

  • Jhung, Sung-Hwa;Park, Youn-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.369-373
    • /
    • 2002
  • The liquid phase oxidation of p-xylene has been carried out with oxygen-enriched gas, and the manganese component was precipitated probably via over-oxidation to $Mn^{4+}$. The precipitation increased with rising oxygen concentration in the reaction gas and occurred mainly in the later part of the oxidation. The activity of the reaction decreased, and the blackening of the product and side reactions to carbon dioxide increased with the degree of precipitation. Precipitation can be decreased with the addition of metal ions, such as cerium, chromium and iron.

Study on oxygen precipitation behavior in Si wafers (실리콘 웨이퍼에서의 산소석출 거동 해석)

  • 이보영;황돈하;유학도;권오종
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.84-88
    • /
    • 1999
  • The behavior of oxygen precipitation was investigated in radial direction using Si wafers with different vacancy-related defects generation area. The behavior of oxygen precipitation in radial direction is strongly dependent on the size of vacancy rich area which is related with crystal growth condition. Oxygen precipitation rate is more enhanced in vacancy rich area than that of interstitial rich area. And anomalous oxygen precipitation is generated in the marginal bands of vacancy and interstial area. In V/I boundary, however, oxygen precipitation is suppressed to nearly perfect.

  • PDF

A Study on Oxygen Precipitation in Heavily Boron Doped Silicon Wafer (고농도 붕소의 도핑된 실리콘 웨이퍼에서의 산소석출에 관한 연구)

  • 윤상현;곽계달
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.705-710
    • /
    • 1998
  • Intrinsic gettering is usually to improve wafer quality, which is an important factor for reliable ULSI devices. In order to generate oxygen precipitation in lightly and heavily boron doped silicon wafers with or without high $^75 As^+$ ion implantation, the 2-step annealing method was adopted. After annealing, the were cleaved and etched with th Wright etchant. The morphology of cross section on samples was inspected by FESEM(field emission scanning electron microscopy). The morphology of unimplanted samples was rater rough than that of the implanted. Oxygen precipitation density observed by an optical microscope in lightly boron doped samples was about 3$\times10^6/cm^3$. However, in heavily boron doped samples, the density of oxygen precipitation was largest at $600^{\circ}C$ in 1st annealing, and decreased abruptly until $800^{\circ}C$, But it increased slightly at $1000^{\circ}C$ and was independent with the implantation.

  • PDF

Silicon Intrinsic Gettering Technology: Understanding and Practice (실리콘 Intrinsic Gettering 기술의 이해와 응용)

  • Choe Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.9-12
    • /
    • 2004
  • Metallic impurities, such as Fe, Cu, and Au, become generation and recombination centers for minority carriers when combined with oxide precipitates or silicon self-interstitial clusters. As these centers may cause leakage and discharge in silicon devices, their prevention through gettering of the metallic impurities is an important issue. In this article, key aspects of intrinsic gettering, such as oxygen control, wafer cleaning, device area denudation, and bulk oxygen precipitation are discussed, and a practical method of implementing intrinsic gettering is outlined.

Source Identification of Nitrate contamination in Groundwater of an Agricultural Site, Jeungpyeong, Korea

  • 전성천;이강근;배광옥;정형재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.63-66
    • /
    • 2003
  • This study applied a hydrogeological field survey and isotope investigation to identify source locations and delineate pathways of groundwater contamination by nitrogen compounds. The infiltration and recharge processes were analyzed with groundwater-level fluctuation data and oxygen-hydrogen stable isotope data. The groundwater flow pattern was investigated through groundwater flow modeling and spatial and temporal variation of oxygen isotope data. Based on the flow analysis and nitrogen isotope data, source types of nitrate contamination in groundwater are identified. Groundwater recharge largely occurs in spring and summer due to precipitation or irrigation water in rice fields. Based on oxygen isotope data and cross-correlation between precipitation and groundwater level changes, groundwater recharge was found to be mainly caused by irrigation in spring and by precipitation at other times. The groundwater flow velocity calculated by a time series of spatial correlations, 231 m/yr, is in good accordance with the linear velocity estimated from hydrogeologic data. Nitrate contamination sources are natural and fertilized soils as non-point sources, and septic and animal wastes as point sources. Seasonal loading and spatial distribution of nitrate sources are estimated by using oxygen and nitrogen isotopic data.

  • PDF

Effect of oxygen concentration and oxygen precipitation of the single crystalline wafer on solar cell efficiency (단결정 실리콘에서 산소농도에 따른 산소석출결함 변화와 태양전지 효율에 미치는 영향)

  • Lee, Song Hee;Kim, Sungtae;Oh, Byoung Jin;Cho, Yongrae;Baek, Sungsun;Yook, Youngjin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.246-251
    • /
    • 2014
  • Recent studies have shown methods of improving solar cell efficiency. Especially on single crystalline silicon wafer which is high-efficiency solar cell material that has been widely studied. Interstitial oxygen (Oi) is the main impurity in the Czochralski (Cz) growing method, and excess of this can form precipitates during cell fabrication. We have demonstrated the effect of Oi impurity and oxygen precipitation concentration of the wafer on Cz-silicon solar cell efficiency. The result showed a decrease in cell efficiency as Oi and oxygen precipitation increase. Moreover, we have found that the critical point of [Oi] to bring higher cell efficiency is at 14.5 ppma in non-existent Bulk Micro Defect (BMD).

Oxygen Profiles and Precipitation Behavior in CZ Silicon Crystals Grown in A Transverse Magnetic Field (수평자장 하에서 성장된 CZ 실리콘 단결정의 산소 분포 및 석출거동)

  • Kim, Kyeong-Min;Choi, Kwang-Su;P. Smetana;T.H. Strudwick;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.119-125
    • /
    • 1992
  • Oxygen segregation in horizontal-magnetic-field-applied Czochralski (HMCZ) silicon crystals has been studied as a function of magnetic field strength (B) and crucible rotation rate (C). Along the axis of 57mm din. <100> crystals grown under B=2, 3, 4 kG and C=4-15rpm, the oxygen distribution was usually saw-tooth shaped and fluctuated unevenly. Compared to the conventional CZ method, this result seems to indicate that the horizontal magnetic field, at levels used in the present experiment, had a destabilizing influence on oxygen transport to the growth interface. On the other hand, as C increased, the oxygen fluctuation lessened, and [0] increased overall. At B=2 kG, an oxygen profile in a level of 27-36 ppma was achieved by a programmed ramp of C. Oxygen precipitation behavior of the HMCZ silicon during a simulated device manufacturing process was compared and found to be inferior to that of typical CZ silicon. The uneven oxygen profile in the as-grown state was identified as the major source of poor precipitation uniformity in the HMCZ silicon.

  • PDF

High resistivity Czochralski-grown silicon single crystals for power devices

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.137-139
    • /
    • 2008
  • Floating zone, neutron transmutation-doped and magnetic Czochralski silicon crystals are being widely used for fabrication power devices. To improve the quality of these devices and to decrease their production cost, it is necessary to use large-diameter wafers with high and uniform resistivity. Recent developments in the crystal growth technology of Czochralski silicon have enable to produce Czochralski silicon wafers with sufficient resistivity and with well-controlled, suitable concentration of oxygen. In addition, using Czoehralski silicon for substrate materials may offer economical benefits, First, Czoehralski silicon wafers might be cheaper than standard floating zone silicon wafers, Second, Czoehralski wafers are available up to diameter of 300 mm. Thus, very large area devices could be manufactured, which would entail significant saving in the costs, In this work, the conventional Czochralski silicon crystals were grown with higher oxygen concentrations using high pure polysilicon crystals. The silicon wafers were annealed by several steps in order to obtain saturated oxygen precipitation. In those wafers high resistivity over $5,000{\Omega}$ cm is kept even after thermal donor formation annealing.

Influence of Landuse Pattern and Seasonal Precipitation on the Long-term Physico-chemical Water Quality in Namhan River Watershed (남한강 수계에서 장기 이화학적 수질특성에 대한 토지이용도 및 계절성 강우의 영향)

  • Lee, Ji-Eun;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1115-1129
    • /
    • 2012
  • The objective of this study was to analyze long-term annual and seasonal trends of water chemistry on landuse patterns and seasonal precipitation using 72 sampling sites within Namhan River watershed during 2001-2010. Water quality, based on multi-parameters of water temperature(WT), dissolved oxygen(DO), biochemical oxygen demand(BOD), chemical oxygen demand(COD), suspended solids(SS), total nitrogen(TN), total phosphorus(TP), and electric conductivity(EC) varied largely depending on monsoon rain and landuse patterns such as forest, cropland, and residence. Concentrations of BOD and COD as an indicator for organic matter pollution, increased during summer monsoon season at the cropland and residential streams. Values of TN and TP were higher in residential streams than in the forest and cropland streams. In the meantime, DO values had weak relations to the landuse patterns of forest and cropland cover. Water quality was worst in cropland and residential streams, and also most degradated in 4th order streams. Overall, our results suggest that efficient water quality management is required in the cropland and residential landuse streams.

Morphology and Characteristic change of $LiMn_2O_4$ Powder Prepared by Precipitation-Evaporation Method (침전-증발법에 의해 제조된 $LiMn_2O_4$ 분말의 특성과 형태 변화)

  • Kim, Guk-Tae;Shim, Young-Jae
    • Korean Journal of Crystallography
    • /
    • v.15 no.1
    • /
    • pp.44-50
    • /
    • 2004
  • Spinel structured lithium managanese oxide $(LiMn_2O_4)$ powder with well defined facetted morphology was prepared by precipitation-evaporation method. {111}, {110}, and {100} planes are mainly observed in the $LiMn_2O_4$ powder. And powder shape of tetradecahedron and octahedron was observed depending on the calcinations temperature. The observed powder morphology observed seemed to be related to the nonstoichiometry of the oxygen in the $LiMn_2O_4$ spinel structure. Oxygen nonstoichiometry might be responsible for the Jahn-teller effect and structure transition which in turn affects the surface energy of the {111}, {110}, and {100} planes. Powder shape transition from tetradecahedron to octahedron seemed to be related to the surface energy of the {111}, {110}, and {100} planes with oxygen nonstoichiometry.