• Title/Summary/Keyword: Oxyanion

Search Result 27, Processing Time 0.035 seconds

Copper(II) Oxyanion Complexes Derived from Sparteine Copper(II) Dinitrate: Synthesis and Characterization of 4- and 5-Coordinate Copper(II) Complexes

  • Lee, Yong-Min;Kim, Yong-Kyu;Jung, Hee-Cheul;Kim, Young-Inn;Choi, Sung-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.404-412
    • /
    • 2002
  • Nine copper(Ⅱ) oxyanion, and mixed oxyanion complexes that have four- or five-coordinate geometries around copper(Ⅱ) centers were derived from sparteine copper(Ⅱ) dinitrate precursor [Cu($C_{15}$$H_{26}$N2)(NO3)2]. The precursor complex undergoes an anion exchange with various oxyanions, and an interchange reaction with other sparteine copper(Ⅱ) complexes. The [Cu($C_{15}$$H_{26}$N2)(CH3CO2)2] also undergoes "halogen atom abstraction" reaction with CCl4 to produce the mixed anion complex [Cu($C_{15}$$H_{26}$N2)(CH3CO2)Cl]. The whole set of prepared complexes has been used for the comparative electrochemical and spectroscopic studies.

The Oxyanions of Calix[4]arene:The NMR Investigation of the Structure of the Oxyanions of Calix[4]arene

  • 남규천;김대순;김종민
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.636-640
    • /
    • 1997
  • The structure and conformational behavior of the oxyanions of calix[4]arene have been studied by the NMR spectrum. The structure of the oxyanions of calix[4]arene was completely dependent upon the counter cation in present. All of the anions derived from in the presence of NaH and KH appear to exist as a cone conformation, whereas those produced with lithium cation such as n-butyllithium and LiOD show a more varied conformational behavior. The mono and tetraanions with lithium cation exist as a cone conformation, the trianions appear to exist as a partial cone conformation, and the dianions appear to disproportionate to the mono and trianions. The conformational stability decreases in the order of $Li^+$ oxyanion > $Na^+$ oxyanion > $K^+$ oxyanion.

Mineral Phase Transitions of Jarosite Substituted by Oxyanions during the Reductive Dissolution Using Oxalate Solution (옥살레이트 용액을 이용한 환원성 용해 시 산화음이온으로 치환된 자로사이트의 광물 상변화)

  • Lee, Myoungsin;Lee, Dongho;Chun, Herin;Kim, Yeongkyoo;Baek, YoungDoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.95-106
    • /
    • 2021
  • The SO4 in the jarosite structure can be substituted by other oxyanions, and therefore, the transition of jarosite to goethite plays a very important role in controlling the behavior of oxyanions. In this study, the phase change according to the species of the oxyanion in jarosite and the related behavior of the oxyanion was studied by mineralogical and geochemical methods when jarosite, which is coprecipitated with various oxynions, undergoes a phase change by a reductive dissolution. Jarosite substituted by five oxyanions by 5 mol% was used in this study. The mineral phase change induced by reductive dissolution using ammonium oxalate was investigated, and the order of phase transition rate of jarosite to goethite was MoO4-jarosite ≥ SeO4-jarosite ≥ CrO4-jarosite > pure jarosite > SeO3-jarosite > AsO4-jarosite, showing that the transition rates vary depending on the substituted oxyanion. The resultant concentration of the leached Fe was slightly different depending on the type of oxyanion and time but did not show a noticeable difference. The concentration of each oxyanion leached according to the change of the mineral phase showed that the order of concentration of oxyanions was Mo > Se(SeO3) > As > Se(SeO4) > Cr in general, and showed a slight increase with time. This trend was related to the species of oxyanions rather than mineral phase change. The results of this study showed that the phase transition of jarosite to goethite was affected by the species of oxyanions, but this tendency did not affect the concentrations leached oxyanions.

Theoretical Studies on the Methanolysis of a Cephalosporin; Mimicking Acylation of the Active Site Serine of D-Ala-D-Ala Transpeptidases

  • Nahm, Kee-Pyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.674-678
    • /
    • 1991
  • Methanolysis of a ${\beta}$-lactam ring of a cephalosporin was simulated with AM1 semiempirical quantum mechanical calculation. The tetrahedral intermediate TD1 from an O-protonated cephalosporin and a methanol transfers the proton intramolecularly to the C-4 carboxylate to generate an oxyanion, i.e., second tetrahedral intermediate TD2, which undergoes the amide bond cleavage without further protonation on the N-5. For this cleavage a low-energy barrier TS2 was located. According to the energy diagram, tetrahedral intermediates easily undergo ring cleavage even without the protonation on the amide nitrogen.

Cloning and Characterization of Zebrafish Microsomal Epoxide Hydrolase Based on Bioinformatics (생물정보학을 이용한 Zebrafish Microsomal Epoxide Hydrolase 클로닝 및 특성연구)

  • Lee Eun-Yeol;Kim Hee-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2006
  • A gene encoding for a putative microsomal epoxide hydrolase (mEH) of a zebrafish, Danio rerio, was cloned and characterized. The putative mEH protein of D. rerio exhibited sequence similarity with mammalian mEH and some other bacterial EHs. A structural model for the putative mEH was constructed using homology modeling based on the crystallographic templates, 1 qo7 and 1 ehy. The catalytic triad consisting of $Asp^{233}$, $Glu^{413}$, and $His^{440}$ was identified, and the characteristic features such as two tyrosine residues and oxyanion hole were found to be highly conserved. Based on bioinformatic analysis together with EH activity assay, the putative protein was annotated as mEH of D. rerio. Enantiopure styrene oxide with enantiopurity of 99%ee and yield of 33.5% was obtained from racemic styrene oxide by the enantioselective hydrolysis activity of recombinant mEH of D. rerio for 45 min.

Molecular Characterization of Epoxide Hydrolase from Aspergillus niger LK using Phylogenetic Analysis (진화적 유연관계 분석을 통한 Aspergillus niger LK의 Epoxide Hydrolase의 특성분석)

  • 김희숙;이은열;이수정;이지원
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • A gene coding for epoxide hydrolase (EH) of Aspergillus niger LK, a fungus possessing the enantioselective hydrolysis activity for racemic epoxides, was characterized by phylogenetic analysis. The deduced protein of A. niger LK epoxide hydrolase shares significant sequence similarity with several bacterial EHs and mammalian microsomal EHs (mEH) and belongs to the a/${\beta}$ hydrolase fold family. EH from A. niger LK had 90.6% identity with 3D crystal structure of lqo7 in Protein Data Bank. Sequence comparison with other source EHs suggested that Asp$\^$l92/, Asp$\^$374/ and His$\^$374/ constituted the catalytic triad. Based on the multiple sequence comparison of the functional and structural domain sequence, the phylogenetic tree between relevant epoxide hydrolases from various species were reconstructed by using Neighbor-Joining method. Genetic distances were so far as 1.841-2.682 but characteristic oxyanion hole and catalytic triad were highly conserved, which means they have diverged from a common ancestor.

비소 및 중금속 오염 토양의 파일럿 토양 세척 연구

  • 고일원;이광표;이철효;김경웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.239-242
    • /
    • 2004
  • Pilot-scale soil washing facility was developed and operation condition was determined in order to remediate a soil contaminated with As, Ni and Zn. Soil washing facility is composed of soil particle separation, soil washing and wastewater treatment process. Both oxyanionic As and cationic Ni and Zn were effciently removed using HCl rather 0than H$_2$SO$_4$ and H$_2$PO$_4$. This is why oxyanion and cation metals can be extracted simultaneously from the contaminated soil in acidic solution. Further, the contaminated soils include calcite and then demand much acidity, that is consumption of acid solution. Fine particles are enriched with contaminants, and coarse particles are removed effectively rather than fine particles. As, Ni and Zn are strongly associated with minerals, and then the residence time should be increased for a reaction with washing solution.

  • PDF

Cloning and Analysis of Medium-Chain-Length Poly(3-Hydroxyalkanoate) Depolymerase Gene of Pseudomonas luteola M13-4

  • Park, In-Jae;Rhee, Young-Ha;Cho, Nam-Young;Shin, Kwang-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1935-1939
    • /
    • 2006
  • The gene encoding the extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase of Pseudomonas luteola Ml3-4, $phaZ_{plu}$, was cloned and analyzed. It was found to be 849 bp, with a deduced protein of 282 amino acids, and was revealed to have a typical leader peptide at its N terminus. The amino acid sequence of $PhaZ_{plu}$ revealed relatively low identity (69 to 72%) with those of other Pseudomonas MCL-PHA depolymerases. In comparison with the amino acid sequences of all available MCL-PHA depolymerases, the depolymerase was found to consist of three domains in sequential order; signal peptide, an N-terminal substrate binding domain, and a catalytic domain, indicating that $PhaZ_{plu}$ belongs to the type IV depolymerases family. The enzyme also contained Asn as an oxyanion hole amino acid.

Adsorption Characteristics of Oxyanions on Ferrihydrite and Mineral Phase Transformation (페리하이드라이트의 산화음이온 흡착 특성과 광물상 변화)

  • Gyure Kim;Yeongkyoo Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.301-310
    • /
    • 2023
  • Ferrihydrite is an iron oxide mineral that is easily found in the natural environment, including acid mine drainage, and has a low crystallinity and high specific surface area, resulting in high reactivity with other ions, and can remove environmentally hazardous substances. However, because ferrihydrite is a metastable mineral, there is a possibility of releasing adsorbed ions by phase transformation to other minerals having low surface area and high crystallinity. In this study, the adsorption characteristics of arsenate, chromate, and selenate on ferrihydrite and the oxyanion removal efficiency of ferrihydrite were studied considering mineral phase transformation. At both pH 4 and 8, the adsorption of oxyanions used in the study were in good agreement with both Langmuir and Freundlich adsorption models except for selenate at pH 8. Due to the difference in surface charge according to pH, at pH 4 a higher amount of ions were adsorbed than at pH 8. The adsorption amount were in the order of arsenate, chromate, and selenate. These different adsorption models and adsorption amounts were due to different adsorption mechanisms for each oxyanions on the surface of ferrihydrite. These adsorption characteristics were closely related to changes in the mineral phase. At pH 4, a phase transformation to goethite or hematite was observed, but only a phase transformation to hematite was observed at pH 8. Among the oxyanion species on ferrihydrite, arsenate showed the highest adsorption capacity and hardly caused phase transformation during the experimental period after adsorption. Contrary to this, chromate and selenate showed faster mineral phase transformation than arsenate, and selenate had the lowest retardation effect among the three oxyanions. Ferrihydrite can effectively remove arsenate due to its high adsorption capacity and low phase transformation rate. However, the removal efficiency for other two oxyanions were low by the low adsorption amount and additional mineral phase transformation. For chromate, the efficient removal is expected only at low concentrations in low pH environments.