• Title/Summary/Keyword: Oxidizing gas

Search Result 134, Processing Time 0.021 seconds

Cometabolic Biodegradation of Fuel Additive Methyl tert-Butyl Ether(MTBE) by Propane- and Butane-Oxidizing Microorganisms (프로판 및 부탄 이용 미생물에 의한 휘발유 첨가제 MTBE의 동시분해)

  • 장순웅
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.45-52
    • /
    • 2003
  • A gas-substrate degrading bacterium, Nocardia SW3, was isolated from the gasoline contaminated aquifer using propane and butane as carbon and energy sources. We have examined the effects of substrate concentration, temperature and pH on the gas substrate degradation as well as MTBE cometabolic degradation. The result for the effect of substrate concentration showed that the maximum degradation rates of propane and butane were 30.6 and 25.4 (n㏖/min/mg protein) at 70 $\mu$㏖, respectively. The optimum temperature and pH for the degradation of gas substrate were $30^{\circ}C$ and 7, respectively. Substrate degradation activity, however, was still active in broad range of pH from 5 to 8 and temperature between $15^{\circ}C$and$35^{\circ}C$. The degradation activity of Nocardia SW3 for the MTBE was similar to the both substrates. The observed maximal transformation yields ($T_y$) were 46.7 and 35.0 (n㏖ MTBE degraded $\mu$㏖ substrate utilized), and the maximal transformation capacities ($T_c$) were 320 and 280 (n㏖MTBE degraded/mg biomass used) for propane and butane oxidizing activity on MTBE, respectively. And also, TBA was detected as by-product of MTBE and it was continuously degraded further.

Technology Trends of Metal Recovery from Wastewater (폐수(廢水) 중(中) 유가금속(有價金屬) 회수기술(回收技術) 동향(動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.91-99
    • /
    • 2013
  • Steel industry which has been accomplishes the base of our country economy, automobile and electronic industry are taking charge of the role, whose electroplating is important. Large amount of wastewater and various metal salts, including hazardous materials was generated from the electroplating pre-treatment, plating, washing and post-plating. Currently, the general wastewater follows in the environmental law and neutralization after controlling, sludge where the various metal is mixed reclaims below multiple regulative and trust it is controlling. The sludge which includes the gas price metal reclaims in the field and trust it controls. a reclamation price of land it is insufficient but and the control expense holds plentifully and it loses the gas price metal which is valuable. Consequently, The research regarding to recover a gas price metal actively from this waste water, it is advanced. A new method to recover valuable metals from electroplating wastewater synthesis of metal sulfides using topical methods utilizing iron oxidizing bacteria, reagent of sulfides and solvent extraction using an organic solvent, such as the development of the law to recover these metals and metal sulfides of wastewater using selective recovery have been studied. By using these wastewater treatment method under frequency above 95%, it has been obtained the valuable metal from the wastewater, where the metal ion of Fe, Cu, Zn and Ni complexes was mixed. As we discuss the wastewater, which has been discharged from electroplating process, it is important and will be applied to the resources of metal in the urban mine.

Experimental Study on Turbulent Ethylene Diffusion Flame (에틸렌 난류확산 화염에 관한 실험적 연구)

  • Yang, G.S.;Kim, Y.M.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.23-33
    • /
    • 1999
  • A turbulent non-premixed ethylene flame, which was set up in a vertical wind tunnel, was examined to understand the effect of turbulent mixing on formations of soot and gaseous species in the flames. Temperature and velocity profiles were measured using uncoated thermocouples and LDV system. Gaseous samples were withdrawn by using a water cooled stainless iso-kinetic gas sampling probe. The samples for inorganic compounds and light hydrocarbons were collected with sampling bottles and were analyzed by a gas chromatography. The samples for aromatic hydrocarbons were collected on a sorbent tube and were analyzed on a GC/MS system. Some of main results were followed. CO and $CO_2$ were measured relatively in early part of flame and the concentration of CO was greater than that of $CO_2$ all over the early flame region due to the scavenging of the oxidizing species OH by soot particles. Aromatic hydrocarbons were measured at x/D=122 along the radial direction and main important species were benzene, xylene, toluene, styrene, indene, naphthalene. The peak points of these compounds occurred at r/D=0.8 apart from the center of flame, around in which the concentration of $C_2H_2$ decayed relatively rapidly from the maximum value.

  • PDF

Rh-doped carbon nanotubes as a superior media for the adsorption of O2 and O3 molecules: a density functional theory study

  • Cui, Hao;Zhang, Xiaoxing;Yao, Qiang;Miao, Yulong;Tang, Ju
    • Carbon letters
    • /
    • v.28
    • /
    • pp.55-59
    • /
    • 2018
  • Transition-metal-embedded carbon nanotubes (CNTs) have been accepted as a novel type of sensing material due to the combined advantage of the transition metal, which possesses good catalytic behavior for gas interaction, and CNTs, with large effective surface areas that present good adsorption ability towards gas molecules. In this work, we simulate the adsorption of $O_2$ and $O_3$ onto Rh-doped CNT in an effort to understand the adsorbing behavior of such a surface. Results indicate that the proposed material presents good adsorbing ability and capacities for these two gases, especially $O_3$ molecules, as a result of the relatively large conductivity changes. The frontier molecular orbital theory reveals that the conductivity of Rh-CNT would undergo a decrease after the adsorption of two such oxidizing gases due to the lower electron activity and density of this media. Our calculations are meaningful as they can supply experimentalists with potential sensing material prospects with which to exploit chemical sensors.

Hydrogen Sensing Properties of ZnO-SWNTs Composite (산화아연과 단중벽 탄소나노튜브 복합체의 수소가스 감응 특성)

  • Jung, Jin-Yeun;Song, Hye-Jin;Kang, Young-Jin;Oh, Dong-Hoon;Jung, Hyuk;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.529-534
    • /
    • 2008
  • The hydrogen gas sensing properties of a zinc oxide nanowire structure were studied. Porous zinc oxide nanowire structures were fabricated by oxidizing zinc deposited on a single-wall carbon nanotube (SWNT) template. This revealed a porous ZnO-SWNT composite due to the porosity in the SWNT film. The gas sensing properties were compared with those of zinc oxide thin films deposited on SiO2/Si substrates in sensitivity and operating temperature. The composite structure showed higher sensitivity and lower operating temperature than the zinc oxide film. It showed a response even at room temperature while the film structure did not.

The Invert for ozone generator by mixed square_wave and PWM (구형파 및 PWM 인버터 조합에 의한 오존발생용 인버터)

  • Park Noh-Sik;Park Sung-Jun;Won Tae-Hyun;Ahn Jin-Woo;Kim Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1193-1195
    • /
    • 2004
  • Ozone gas is one of the strongest oxidizing and bleaching agents which leave no residues harmful to the global environment. In recent years, the ozone generator has been widely utilized, However, it has been known that a broader application of ozone is hindered primarily because of its low efficiency of generation. Thus, it is more indispensable to improve actual system efficiency of the silent discharge type ozonizer using high frequency inverter. This paper presents a multi level resonant ozone power regulation by association of high frequency transformers and full bridge invert. And proposed resonant inverter system can generate continuous output voltage. can control linearly quantity of ozone gas. This invert that add PWM forms within square forms of output voltage about one level range. The power regulation characteristics and operating performances of silent discharge (SD)type ozone generating tube load driven by this load proposed inverter using FET modules are illustrated from a practical point of view, which can operate under stable conditions of basic level and PWM hybrid control strategy implemented DSP(2406). The effectoveness of propsed invert type ozonizer is proved by experiment results.

  • PDF

High-temperature Corrosion of CrAlSiN Films in Ar/1%SO2 Gas

  • Lee, Dong Bok;Xiao, Xiao;Hahn, Junhee;Son, Sewon;Yuke, Shi
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.5
    • /
    • pp.246-250
    • /
    • 2019
  • Nano-multilayered $Cr_{25.2}Al_{19.5}Si_{4.7}N_{50.5}$ films were deposited on the steel substrate by cathodic arc plasma deposition. They were corroded at $900^{\circ}C$ in $Ar/1%SO_2$ gas in order to study their corrosion behavior in sulfidizing/oxidizing environments. Despite the presence of sulfur in the gaseous environment, the corrosion was governed by oxidation, leading to formation of protective oxides such as $Cr_2O_3$ and ${\alpha}-Al_2O_3$, where Si was dissolved. Iron diffused outward from the substrate to the film surface, and oxidized to $Fe_2O_3$ and $Fe_3O_4$. The films were corrosion-resistant up to 150 h owing to the formation of thin ($Cr_2O_3$ and/or ${\alpha}-Al_2O_3$)-rich oxide layers. However, they failed when corroded at $900^{\circ}C$ for 300 h, resulting in the formation of layered oxide scales due to not only outward diffusion of Cr, Al, Si, Fe and N, but also inward movement of sulfur and oxygen.

Dynamics of Functional Genes and Bacterial Community during Bioremediation of Diesel-Contaminated Soil Amended with Compost

  • Hyoju Yang;Jiho Lee;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.471-484
    • /
    • 2023
  • Compost is widely used as an organic additive to improve the bioremediation of diesel-contaminated soil. In this study, the effects of compost amendment on the remediation performance, functional genes, and bacterial community are evaluated during the bioremediation of diesel-contaminated soils with various ratios of compost (0-20%, w/w). The study reveals that the diesel removal efficiency, soil enzyme (dehydrogenase and urease) activity, soil CH4 oxidation potential, and soil N2O reduction potential have a positive correlation with the compost amendment (p < 0.05). The ratios of denitrifying genes (nosZI, cnorB and qnorB) to 16S rRNA genes each show a positive correlation with compost amendment, whereas the ratio of the CH4-oxidizing gene (pmoA) to the 16S rRNA genes shows a negative correlation. Interestingly, the genera Acidibacter, Blastochloris, Erythrobacter, Hyphomicrobium, Marinobacter, Parvibaculum, Pseudoxanthomonas, and Terrimonas are strongly associated with diesel degradation, and have a strong positive correlation with soil CH4 oxidation potential. Meanwhile, the genera Atopostipes, Bacillus, Halomonas, Oblitimonas, Pusillimonas, Truepera, and Wenahouziangella are found to be strongly associated with soil N2O reduction potential. These results provide useful data for developing technologies that improve diesel removal efficiency while minimizing greenhouse gas emissions in the bioremediation process of diesel-contaminated soil.

$SO_2$ and CO Removal Characteristics in Various Applied Voltage of Nonthermal Discharge Plasma in a Crossed DC Magnetic Field (전.자계상의 전원장치변화에 따른 비열방전 플라즈마의 $SO_2$와 CO가스 제거특성)

  • Lee, Geun-Taek;Geum, Sang-Taek;Mun, Jae-Duk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.215-220
    • /
    • 1999
  • $SO_2$and CO gas removal characteristics of a wire-to-cylinder type nonthermal discharge plasma reactor in various applied voltage (-dc, ac, fast rising pulse and high frequency pulse) and a crossed dc magnetic field have been investigated. The experiment has been emphasized on the oxidizing characteristics of $SO_2$ and CO gas by $O_3$ and the applying of a crossed magnetic field, which would induce the cyclotronic and drift motions of electrons making the residual time longer in the removal airgap space. And it also would enhance the energy of electrons and the electrophysicochemical actions to remove the pollutant gases effectively. It is found thatthe corona onset voltage and the breakdown voltage were decreased with increasing the crossed magnetic field and decrease initial fed $SO_2$and CO concentration. As a result, a higher ozone generation and $SO_2$ and CO gas removal rate of 20[%] can be obtained with -dc, ac and fast rising pulse corona discharges in the crossed dc current-induced magnetic field. But high frequency pulse didn't show effect in applying of a crossed magnetic field.

  • PDF

Large Scale Experiments Simulating Hydrogen Distribution in a Spent Fuel Pool Building During a Hypothetical Fuel Uncovery Accident Scenario

  • Mignot, Guillaume;Paranjape, Sidharth;Paladino, Domenico;Jaeckel, Bernd;Rydl, Adolf
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.881-892
    • /
    • 2016
  • Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012-2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.