• Title/Summary/Keyword: Oxidizing gas

Search Result 134, Processing Time 0.026 seconds

The Effect of Catalytic Metal Work Functions and Interface States on the High Temperature SiC-based Gas Sensors (금속 (Pt)과 4H-SiC의 계면상태에 따른 실리콘 카바이드 기반 고온 가스센서 특성 분석)

  • Jung, Ji-Chul;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.280-284
    • /
    • 2011
  • Silicon carbide (SiC)-based gas sensors can be operated at very high temperatures. So far, catalytic metal-schottky diodes respond fast to a change between a reducing and an oxidizing atmosphere. Therefore SiC diodes have been suggested for high temperature gas sensor applications. In this work, the effect of reactivity of the catalytic surface on the 4H-SiC sensor-structures in 375 K~775 K have been studied and some fundamental simulations have also been performed.

Gas-Phase Mercury Control Technology from Flue Gas (연소배가스로부터 가스상 수은 처리기술)

  • 이시훈
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2003
  • In Korea, not much interest has been paid yet to mercury among flue gas HAPs (Hazardous Air Pollutants), but mercury is expected to become a major problem in the near future. The present paper investigates the current state of mercury emission and control technologies. Interest of the U.S. and European countries in the area of air pollution has been recently directed to mercury emitted from power plants. There are largely two mercury removal technologies applied to power plants. One is removing mercury by oxidizing elemental mercury in WFGD (Wet Flue Gas Desulfurization), and the other is spraying an adsorbent such as activated carbon or other novel sorbents (low-cost sorbents). Developed country is requiring that all power plants be equipped with mercury control facilities by 2007. This paper aims at contributing to the establishment of future strategies in response to the problem.

Densification and Electrical Conductivity of Plasma-Sprayed (Ca, Co)-Doped LaCrO3 Coating (플라즈마 스프레이 (Ca, Co)-Doped LaCrO3 코팅층의 치밀화 및 전기전도도)

  • Park, Hee-Jin;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2017
  • Doped-$LaCrO_3$ perovskites, because of their good electrical conductivity and thermal stability in oxidizing and/or reducing environments, are used in high temperature solid oxide fuel cells as a gas-tight and electrically conductive interconnection layer. In this study, perovskite $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1})O_3$ (LCCC) coatings manufactured by atmospheric plasma spraying followed by heat treatment at $1200^{\circ}C$ have been investigated in terms of microstructural defects, gas tightness and electrical conductivity. The plasma-sprayed LCCC coating formed an inhomogeneous layered structure after the successive deposition of fully-melted liquid droplets and/or partially-melted droplets. Micro-sized defects including unfilled pores, intersplat pores and micro-cracks in the plasma-sprayed LCCC coating were connected together and allowed substantial amounts gas to pass through the coating. Subsequent heat treatment at $1200^{\circ}C$ formed a homogeneous granule microstructure with a small number of isolated pores, providing a substantial improvement in the gas-tightness of the LCCC coating. The electrical conductivity of the LCCC coating was consequently enhanced due to the complete elimination of inter-splat pores and micro-cracks, and reached 53 S/cm at $900^{\circ}C$.

Performance of LNT Catalyst according to the Supply Condition of Hydrogen Reductants for Diesel Engine (디젤엔진에서 수소 환원제 공급 조건에 따른 LNT 촉매 성능)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.142-148
    • /
    • 2009
  • The direct injection(DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides(NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing a suitable after treatment device has been increased. NOx absorbing catalysts are based on the concept of NOx storage and release making it possible to reduce NOx emission in net oxidizing gas conditions. This De-NOx system, called the LNT(Lean NOx Trap) catalyst, absorbs NOx in lean exhaust gas conditions and release it in rich conditions. This technology can give high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter at the right time. In this research, a performance characteristics of LNT with a hydrogen enriched gas as a reductant was examined and strategies of controlling the injection and rich exhaust gas condition were studied. The NOx reduction efficiency is closely connected to the injection timing and duration of reductant. LNT can reduce NOx efficiently with only 1 % fuel penalty.

Biological Treatment of Piggery Liquid Manure by Malodor Reducing Bacteria (악취 저감용 세균에 의한 돈분뇨의 생물학적 처리)

  • Quan, Xiao-Tian;Shin, Jae-Hyeong;Wang, Yan-Qing;Choi, Min-Gyung;Kim, Sang-Min;Kim, Soo-Ki
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.971-978
    • /
    • 2022
  • Sulfur-oxidizing, ammonium-oxidizing, and nitrogen-oxidizing media were used to isolate bacteria to degrade malodor gas effectively in piggery manure or soil. Twelve different strains were isolated: Paenibacillus amylolyticus, Rhodococcus jostii, Rhodococcus qingshengii, Rhodococcus opacus, Alcaligenes faecalis, Alcaligenes faecalis, Kastia adipate, Kastia adipata, Microbacterium oxydans, Halomonas campisalis, Acinetobacter oleivorans, and Micrococcus luteus. By inoculating each strain in the piggery liquid manure by 1%, the pH in most strain treatments was maintained at 8.0. Total bacterial counts were maintained at 7.3~7.9 log CFU/ml until 15 days, and then they dropped dramatically down to 5.1~5.5 log CFU/ml. On the 30th day, the treatment group inoculated with Rhodococcus opacus SK2659 showed a relatively high level of ammonium nitrogen removal, which was 39% of that of the control group. When Rhodococcus opacus SK2659 was inoculated, H2S concentration after 100 days was 3.23% compared with the control (no inoculation), suggesting that Rhodococcus opacus SK2659 is an excellent strain for removing malodor gas. The gas production of the treatments was lower than that of the control. The total accumulated amount of gas production in most strain treatments was a quarter of the gas production compared to the control throughout the experimental periods. Acinetobacter oleivorans SK2675 showed the lowest level at 12.39% compared to the control in gas production. In conclusion, the use of mixture strains, such as Rhodococcus opacus SK2659 and Acinetobacter oleivorans SK2675 isolated in this study could increase the efficacy of malodor gas reduction in the biological treatment of piggery manure.

Diversity of Nitrifying and Denitrifying Bacteria in SMMIAR Process (완전침지형 회전매체공정 내 질산화 및 탈질 관련 미생물의 군집 분포)

  • Quan, Zhe-Xue;Lim, Bong-Su;Kang, Ho;Yoon, Kyung-Yo;Yoon, Yeo-Gyo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1014-1021
    • /
    • 2006
  • SMMIAR (Submerged Moving Media Intermittent Aeration Reactor) Process is a very efficient system which remove ammonia to nitrogen gas in one reactor. In this study, we determined the diversity of ammonia oxidizing bacteria and denitrifying bacteria using specific PCR amplification and the clone library construction. An ammonia monooxygenase gene(amoA) was analyzed to investigate the diversity of nitrifiers. Most of amoA gene fragments (27/29, 93%) were same types and they are very similar (>99%) to the sequences of Nitrosomonas europaea and other clones isolated from anoxic ammonia oxidizing reactors. ANAMMOX related bacteria have not determined by specific PCR amplification. A nitrite reductase gene(nirK) was analyzed to investigate the diversity of denitrifying bacteria. About half (9/20, 45%) of denitrifiers were clustered with Rhodobacter and most of others were clustered with Mesorhizobium (6/20, 30%) and Rhizobium (3/20, 15%). All of these nirK gene clones were clustered in alpha-Proteobacteria and this result is coincide with other system which also operate nitrification and denitrification in one reactor. The molecular monitoring of the population of nitrifiers and denitrifiers would be helpful for the system stabilization and scale-up.

Detection and Potential Abundances of Anammox Bacteria in the Paddy Soil

  • Khanal, Anamika;Lee, Seul;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • BACKGROUND: Microbes that govern a unique biochemical process of oxidizing ammonia into dinitrogen gas, such as anaerobic ammonium oxidation (anammox) have been reported to play a pivotal role in agricultural soils and in oceanic environments. However, limited information for anammox bacterial abundance and distribution in the terrestrial habitats has been known. METHODS AND RESULTS: Phylogenetic and next-generation sequencing analyses of bacterial 16S rRNA gene were performed to examine potential anammox bacteria in paddy soils. Through clone libraries constructed by using the anammox bacteria-specific primers, some clones showed sequence similarities with Planctomycetes (87% to 99%) and anammox bacteria (94% to 95%). Microbial community analysis for the paddy soils by using Illumina Miseq sequencing of 16S rRNA gene at phylum level was dominated by unclassified Bacteria at 33.2 ± 7.6%, followed by Chloroflexi at 20.4 ± 2.0% and Acidobacteria at 17.0 ± 6.5%. Planctomycetes that anammox bacteria are belonged to was 1.5% (± 0.3) on average from the two paddy soils. CONCLUSION: We suggest evidence of anammox bacteria in the paddy soil. In addition to the relatively well-known microbial processes for nitrogen-cycle, anammox can be a potential contributor on the cycle in terrestrial environments such as paddy soils.

The Effect of Fuel Sulfer on Particulate Matter of Diesel Engine Equipped with Oxidation Catalyst (경유 중 황이 산화촉매 장착 디젤엔진의 입자상 물질에 미치는 영향)

  • 조강래;신영조;류정호;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.487-495
    • /
    • 1997
  • The most desirable diesel oxidation catalyst (DOC) should have the properties of oxidizing CO, HC and SOF effectively at low exhaust gas temperature while minimizing the formation of sulfate at high exhaust gas temperature. Precious metals such as platinum and palladium have been known to be sufficiently active for oxidizing SOF and also to have high activity for the oxidation of sulfur dioxide $(SO_2)$ to sulfur trioxide $(SO_3)$. There is a need to develop a highly selective catalyst which can promote the oxidation SOF efficiently, on the other hand, suppress the oxidation of $SO_2$. In this study, a Pt-V catalyst was prepared by impregnating platinum and vanadium onto a Ti-Si wash coated ceramic monolith substrate. A prepared Pt-V catalytic converter was installed on a heavy duty diesel engine and the effect of fuel sulfur on particulate matter (PM) of heavy duty diesel engine was measured. The effect of fuel sulfur on PM of Pt-V was also compared with that of a commercialized Pt catalyst currently being used in some of the heavy duty diesel engines in advanced countries. Only 1 $\sim$ 3% of sulfur in the diesel fuel was converted to sulfate in PM for the engine without catalyst, but almost 100% of sulfur conversion was achieved for the engine with Pt catalyst at maximum loading condition. In the case of Pt-V catalyst, there was no big difference in conversion with the base engine even at maximum loading condition. The reason of SOF increase according to the increase of suflate emission was identified as the washing off effect of bound water in sulfate.

  • PDF

Observation and Characteristics of Ozonizer using Injection Needle Electrode (주사바늘 전극형 오존발생기 특성 연구)

  • Park, Hyun-Mi;Kwon, Young-Hak;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.77-82
    • /
    • 2015
  • Ozone is a powerful disinfectant and oxidizing agent, and it is used in a wide range of applications, such as waste water treatment, food processing, etc.. There is also a great potential of using ozone in new emerging medical applications, such as ozone dentistry and ozone oxygen therapy. For these purposes, simple, small, compact and efficient sources of ozone are needed. In this study, in order to increase the current-voltage range of the discharge and to avoid the overheating of the gas in the ozonizer we suggested ozonizer of injection needle and plate electrode type(INP Type) with the gas through the needle. A ozonizer of INP type have been investigated by focusing on ozone concentration and yield according to flow rates and Gap of two electrodes. The results of studies of ozone production for DC corona discharge in oxygen at atmospheric pressure about the ozonizer of INP type. The ozone concentration and the generation yield increased as the gap of two electrodes and gas flow were decreased. Also, when the gap of two electrodes and gas flow with no change, the ozone concentration and generation yield each have variation of direct proportion and inverse proportion with discharge voltage.

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.