• 제목/요약/키워드: Oxide nanoparticle

검색결과 244건 처리시간 0.026초

Core-shell 구조의 Au/TiO2 나노 미립자의 합성 및 특성 평가 (Synthesis and Characterization of Au/TiO2 Nanoparticles with Core-shell Structure)

  • 유연태
    • 한국세라믹학회지
    • /
    • 제40권9호
    • /
    • pp.902-908
    • /
    • 2003
  • Au/TiO$_2$ core-shell 구조 나노 미립자가 졸-겔법에 의해서 제조되었고, TiO$_2$ shell의 형상과 결정성이 TEM과 UV-Vis. absorption spectrometer에 의해서 조사되었다. Au/TiO$_2$ core-shell 나노 미립자는 Au 콜로이드 에탄올 수용액 중에서 TOAA(Titanium Oxide Acethylacetonate)의 가수분해에 의해 합성될 수 있었다. Au 나노 미립자의 표면에 형성된 TiO$_2$ shell의 두께는 약 1 nm이었다. TiO$_2$ shell의 결정성을 조사하기 위하여. TiO$_2$가 피복된 Au 콜로이드 에탄올 용액에 254 nm의 자외선과 $^{60}$Co의 방사선을 조사하였다. Au 나노 미립자의 surface plasmon 현상은 방사선이 조사되었을 때만 나타났고, 이 결과로부터 TiO$_2$ shell은 비정질 상태임을 알 수 있었으며, Au의 분산성 향상을 위해 표면에 처리된 MUA(Mercaptoundecanoic Acid)층은 전자의 이동을 방해하는 장애물로 작용하지 않음을 확인할 수 있었다.

X-선 광전자분광법을 이용한 MgO/Mg 표면에 증착된 Pd의 분석 (X-Ray Photoelectron Spectroscopy Studies of Pd Supported MgO/Mg)

  • 태위승;서현욱;김광대;김영독
    • 한국진공학회지
    • /
    • 제18권4호
    • /
    • pp.281-287
    • /
    • 2009
  • 본 연구에서는 고진공 조건에서 열기화 증착 방법으로 산화막으로 덮인 Mg 리본(MgO/Mg) 위에 Pd을 증착하였다. 고진공 속에서 만든 시료의 전자구조를 in-situ X-선 광전자 분광법 (XPS)을 통하여 분석하였고, 분석 후, FE-SEM을 통해 증착량의 증가에 따른 표면구조의 변화를 확인하였다. Pd 증착량이 1 나노미터 (nm) 이하인 경우에는 증착량 증가에 따른 Pd 나노입자 크기의 증가를 확인하였으며, Pd을 1 nm 이상의 두께로 증착시킨 경우에는 Pd 입자들의 뭉침에 의해 얇은 필름이 형성됨을 관찰하였다. Pd과 기판사이의 전하이동에 의하여 산화물/금속 계면의 Pd 원자들은 부분적으로 양전하를 띔을 확인하였다.

마이크로파 보조 수열 합성법으로 제조한 Rhombohedral In2O3 나노입자의 α-pinene 감지 특성 (α-Pinene Sensing Properties of Rhombohedral In2O3 Nanoparticles Prepared using the Microwave-assisted Hydrothermal Method)

  • 유병훈;이효정;황주호;윤지욱
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.418-422
    • /
    • 2022
  • α-pinene is a natural volatile organic compound secreted by coniferous trees to protect themselves from attacks by insects, microorganisms, and viruses. Recently, studies have reported that α-pinene possesses pharmacological effects on various biological reactions such as anxiolytic, sleep-enhancing, anti-nociceptive, and inflammatory activity. Thus, forest bathing has recently received great attention as a novel therapy for treating severe diseases as well as psychological issues. However, appropriate places and timings for effective therapies are still veiled, because on-site monitoring of α-pinene gas in forests is barely possible. Although portable chemosensors could allow real-time analysis of α-pinene gas in forests, the α-pinene sensing properties of chemosensors have never been reported thus far. Herein, we report for the first time, the α-pinene sensing properties of an oxide semiconductor gas sensor based on rhombohedral In2O3 (h-In2O3) nanoparticles prepared by a microwave-assisted hydrothermal reaction. The h-In2O3 nanoparticle sensor showed a high response to α-pinene gas at ppm levels, even under humid conditions (for example, relative humidity of 50 %). The purpose of this research is to identify the potential of oxide semiconductor gas sensors for implementing portable devices that can detect α-pinene gas in forests in real-time.

Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys

  • Thu Thuy Thai;Anh Truc Trinh;Thi Thanh Tam Pham;Hoan Nguyen Xuan
    • Corrosion Science and Technology
    • /
    • 제22권2호
    • /
    • pp.90-98
    • /
    • 2023
  • In this study, cobalt oxide (Co3O4) and cobalt-doped magnetite (CoFe2O4) nanoparticles were synthesized by a hydrothermal method. They were then used as corrosion inhibitors for corrosion protection of AA2024-T3 aluminum alloys. These obtained nanoparticles were characterized by x-ray diffraction, field-emission scanning electron microscopy, and Zeta potential measurements. Corrosion inhibition activities of Co3O4 and CoFe2O4 nanoparticles were determined by performing electrochemical measurements for bare AA2024-T3 aluminum alloys in 0.05 M NaCl + 0.1 M Na2SO4 solution containing Co3O4 or CoFe2O4 nanoparticles. Corrosion protection for AA2024-T3 aluminum alloys by a water-based epoxy with or without the synthesized Co3O4 or CoFe2O4 nanoparticles was investigated by electrochemical impedance spectroscopy during immersion in 0.1 M NaCl solution. The corrosion protection of epoxy coating deposited on the AA2024-T3 surface was improved by incorporating Co3O4 or CoFe2O4 nanoparticles in the coating. The corrosion protection performance of the epoxy coating containing CoFe2O4 was higher than that of the epoxy coating containing Co3O4.

Efficacy of Synthesized NO-releasing Nanoparticles on the Germination and Growth of Arabidopsis thaliana

  • Nusrat Jahan Methela;Anjali Pande;Waqas Rahim;Da-Sol Lee;Bong-Gyu Mun;Geun-Mo Lee;Cho Jun-ho;Tiba Nazar Ibrahim Al Azzawi;Hak-Yoon Kim;Byung-Wook Yun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.159-159
    • /
    • 2022
  • Nitric oxide (NO) is a versatile signaling molecule, which is not only involved in plant growth and development but also regulates biological processes in response to biotic and abiotic stresses. Exogenous application of NO regulates the endogenous level of nitric oxide in response to stress conditions and therefore, NO donors are frequently used for stress alleviation. However, NO has very short half-life along with high reactivity. Therefore, conventional NO donors are often disadvantageous due to the relative instability of NO. On the contrary, development of NO releasing nanoparticles is a potential technique for enhancing the availability of NO in plants. Therefore, our aim was to synthesize such potential NO releasing nanoparticles which may be useful for application in agriculture. We have prepared Chitosan encapsulated S-nitrosoglutathione nanoparticles (GSNONP) and tried it with different concentrations for basic research in Arabidopsis thaliana. Our results suggest that lower concentration of this nanoparticle is highly effective for better growth of plants whereas higher concentration produces toxicity that leads to plant death. We observed better growth of Arabidopsis thaliana at 1µM concentration of the GSNONP compared to free GSNO.

  • PDF

Investigation of the Characteristics of New, Uniform, Extremely Small Iron-Based Nanoparticles as T1 Contrast Agents for MRI

  • Young Ho So;Whal Lee;Eun-Ah Park;Pan Ki Kim
    • Korean Journal of Radiology
    • /
    • 제22권10호
    • /
    • pp.1708-1718
    • /
    • 2021
  • Objective: The purpose of this study was to evaluate the magnetic resonance (MR) characteristics and applicability of new, uniform, extremely small iron-based nanoparticles (ESIONs) with 3-4-nm iron cores using contrast-enhanced magnetic resonance angiography (MRA). Materials and Methods: Seven types of ESIONs were used in phantom and animal experiments with 1.5T, 3T, and 4.7T scanners. The MR characteristics of the ESIONs were evaluated via phantom experiments. With the ESIONs selected by the phantom experiments, animal experiments were performed on eight rabbits. In the animal experiments, the in vivo kinetics and enhancement effect of the ESIONs were evaluated using half-diluted and non-diluted ESIONs. The between-group differences were assessed using a linear mixed model. A commercially available gadolinium-based contrast agent (GBCA) was used as a control. Results: All ESIONs showed a good T1 shortening effect and were applicable for MRA at 1.5T and 3T. The relaxivity ratio of the ESIONs increased with increasing magnetic field strength. In the animal experiments, the ESIONs showed peak signal intensity on the first-pass images and persistent vascular enhancement until 90 minutes. On the 1-week follow-up images, the ESIONs were nearly washed out from the vascular structures and organs. The peak signal intensity on the first-pass images showed no significant difference between the non-diluted ESIONs with 3-mm iron cores and GBCA (p = 1.000). On the 10-minutes post-contrast images, the non-diluted ESIONs showed a significantly higher signal intensity than did the GBCA (p < 0.001). Conclusion: In the phantom experiments, the ESIONs with 3-4-nm iron oxide cores showed a good T1 shortening effect at 1.5T and 3T. In the animal experiments, the ESIONs with 3-nm iron cores showed comparable enhancement on the first-pass images and superior enhancement effect on the delayed images compared to the commercially available GBCA at 3T.

New polyester composites synthesized with additions of different sized ZnO to study their shielding efficiency

  • M. Elsafi;M.I. Sayyed;Aljawhara H. Almuqrin
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2821-2827
    • /
    • 2024
  • This investigation developed a novel polyester composite based on the addition of zinc oxide (ZnO) of different sizes. We prepared nine samples Containing different percentages and sizes of ZnO as well as the control sample (Pol-ZnO0). The attenuation factors of Pol-micro ZnO were estimated using Phy-x software, while the HPGe detector and various gamma sources were used to experimentally measure the all-prepared composites. In terms of the two methods for micro composites, good agreement was observed. The linear attenuation coefficient (LAC) of Pol-ZnO20, Pol-ZnO40, and Pol-ZnO60, two more samples one with ZnO nanoparticles instead of microparticles, and the other with half microparticles and half nanoparticles (referenced as 0.5 M + 0.5 N) were determined. For all the Polyester composites and energies, the mixture of microparticles and nanoparticles had greater LAC values than each of the particles on their own. For example, the LAC values for the Pol-ZnO20 polymer at 1.330 MeV are 0.0836, 0.0888, and 0.0903 cm-1 for the microparticles, nanoparticles, and mixture, respectively. The values of the prepared polymer samples' radiation protection efficiency (RPE) against energy with a thickness of 2 cm was determined experimentally. The Pol-ZnO60 0.5 M + 0.5 N sample has the highest RPE out of all the samples, followed by its nanoparticle counterpart, and then its microparticle counterpart. On the other hand, the Pol-ZnO0 sample, the polymer with no ZnO content, at all energies has the lowest RPE, followed by the three Pol-ZnO20 samples.

측면 치환 그래핀/에폭시 나노복합재료의 인장 특성 평가 (Investigation of Tensile Properties in Edge Modified Graphene Oxide(E-GO)/Epoxy Nano Composites)

  • 이동현;조가인;임형미;김만태;권동준
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.209-214
    • /
    • 2024
  • 그래핀 옥사이드(graphene oxide, GO)는 높은 강성, 열전도도 및 전기전도도를 가지고 있기 때문에 나노복합재료의 강화재로 적용되고 있다. 본 연구는 GO와 측면 부분에만 수산화기로 치환된 GO (E-GO)를 에폭시 나노복합재료에 적용하여 기계적 물성을 평가하였다. 초음파 분산법을 통하여 에폭시 수지에 GO/E-GO를 균일하게 분산시켰고, 인장 시험을 통하여 기계적 물성을 평가하였다. 나노입자를 첨가함에 따라 인장강도와 인성이 높아지는 것을 확인하였다. 나노 입자를 첨가하지 않은 에폭시의 인장강도는 74.4 MPa이고, E-GO를 0.3 wt% 첨가되었을 때 90.7 MPa로 가장 높은 인장강도 값을 나타내었다. 모듈러스 또한 2.55 GPa에서 나노입자의 첨가에 따라 3.53 GPa까지 증가하는 것을 확인할 수 있었다. 전계방사 주사전자현미경을 통하여 파단면을 관찰하였을 때 균열의 성장이 나노 입자에 의하여 저지되며 파단까지 이어지지 못하고, 여러 방향으로 나뉘는 현상을 보였다. 측면 부분에만 표면처리가 일어난 E-GO에서는 높은 분산도와 표면처리에 의하여 GO보다 높은 기계적 물성을 보였다. 이러한 결과를 통하여 고성능 나노복합재료의 개발을 위하여 나노 입자의 표면처리의 중요성을 확인할 수 있다.

Transparent Conductive Single-Walled Carbon Nanotube Films Manufactured by adding carbon nanoparticles

  • Lee, Seung-Ho;Kim, Myoung-Soo;Goak, Jung-Choon;Lee, Nae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.417-417
    • /
    • 2009
  • Although a transparent conductive film (TCF) belongs to essential supporting materials for many device applications such as touch screens, flat panel displays, and sensors, a conventional transparent conductive material, indium-tin oxide (ITO), suffers from considerable drawback because the price of indium has soared since 2001. Despite a recent falloff, a demand of ITO is expected to increase sharply in the future due to the trend of flat panel display technologies toward flexible, paper-like features. There have been recently extensive studies to replace ITO with new materials, in particular, carbon nanotubes (CNTs) since CNTs possess excellent properties such as flexibility, electrical conductivity, optical transparency, mechanical strength, etc., which are prerequisite to TCFs. This study fabricated TCFs with single-walled carbon nanotubes (SWCNTs) produced by arc discharge. The SWCNTs were dispersed in water with a surfactant of sodium dodecyl benzene sulfonate (NaDDBS) under sonication. Carbon black and fullerene nanoparticles were added to the SWCNT-dispersed solution to enhance contact resistance between CNTs. TCFs were manufactured by a filtration and transfer method. TCFs added with carbon black and fullerene nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy (optical transmittance), and four-point probe measurement (sheet resistance).

  • PDF

Evaluation of dispersion degree of nanoparticles in TiO2/epoxy resin nanocomposites

  • Nam, Ki-Woo;Moon, Chang-Kwon
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.338-344
    • /
    • 2014
  • The purpose of this study was to evaluate the dispersion degree of particles using a nanoindentation test for titanium oxide nanoparticles/epoxy resin nanocomposites. Thus, the effects of the particle size and weight fraction, dispersion agent, and position of the sample on the modulus and degree of particle dispersion in the nanocomposites were investigated. As a result, the dispersion degree of large particles was found to be better than that of smaller particles in composites. It could be found that the aggregation or agglomeration of small particles with large surface energy occurred more easily in nanocomposites because of the large specific surface area. The moduli of the upper side of the film-shaped sample obtained from a nanoindentation test were low scattering, while the values for the bottom side were high scattering. Thus, the dispersion situation of the nanoparticles on the upper side of film-shaped samples could be considered to be better than that for the bottom side. This could be concluded due to the non-uniform nanoparticle dispersion in the same sample. The modulus obtained from nanoindentation test increased slightly with the content of nanoparticles and increased with the indented depth for the same sample. The latter is presumably due to the increase in the accumulated particles facing the indenter with the indented depth. The nanoindentation test was found to be a useful method to evaluate the dispersion status of nanoparticles in nanocomposites.