• Title/Summary/Keyword: Oxide layers

Search Result 876, Processing Time 0.025 seconds

Analysis of Ni/Cu Metallization to Investigate an Adhesive Front Contact for Crystalline-Silicon Solar Cells

  • Lee, Sang Hee;Rehman, Atteq ur;Shin, Eun Gu;Lee, Doo Won;Lee, Soo Hong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 2015
  • Developing a metallization that has low cost and high efficiency is essential in solar-cell industries, to replace expensive silver-based metallization. Ni/Cu two-step metallization is one way to reduce the cost of solar cells, because the price of copper is about 100 times less than that of silver. Alkaline electroless plating was used for depositing nickel seed layers on the front electrode area. Prior to the nickel deposition process, 2% HF solution was used to remove native oxide, which disturbs uniform nickel plating. In the subsequent step, a nickel sintering process was carried out in $N_2$ gas atmosphere; however, copper was plated by light-induced plating (LIP). Plated nickel has different properties under different bath conditions because nickel electroless plating is a completely chemical process. In this paper, plating bath conditions such as pH and temperature were varied, and the metal layer's structure was analyzed to investigate the adhesion of Ni/Cu metallization. Average adhesion values in the range of 0.2-0.49 N/mm were achieved for samples with no nickel sintering process.

A Study on the Evaluation of Oxidation Resistance of Nitride Films in DRAM Capacitors (DRAM 커패시터의 질화막 내산화성 평가에 관한 연구)

  • Chung, Yeun-Gun;Kang, Seong-Jun;Joung, Yang-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.451-456
    • /
    • 2021
  • In order to improve the cell capacitance and scale down in capacitors of semiconductor memory devices, a stacked ONO structure has been introduced as a dielectric layer and thinning of these layers has been attempted continuously. However, many problems have emerged in the manufacturing process. In this study, L/L LPCVD system was used to suppress the growth of natural oxide film of about 10 Å, which was able to secure the capacitance of 3fF / cell. In addition, we investigated the effect of thinning of the dielectric film on the abnormal oxidation of the nitride film, and proposed a stable process control method for forming the dielectric film to ensure oxidation resistance.

Spheroidization of Pure-vanadium Powder using Radio Frequency Thermal Plasma Process (RF 플라즈마를 이용한 순수 바나늄 분말의 구상화 거동 연구)

  • Adomako, Nana Kwabena;Yang, Seungmin;Lee, Min Gyu;Reddy, N.S.;Kim, Jeoung-Han
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.305-310
    • /
    • 2019
  • In the present work, spheroidization of angular vanadium powders using a radio frequency (RF) thermal plasma process is investigated. Initially, angular vanadium powders are spheroidized successfully at an average particle size of $100{\mu}m$ using the RF-plasma process. It is difficult to avoid oxide layer formation on the surface of vanadium powder during the RF-plasma process. Titanium/vanadium/stainless steel functionally graded materials are manufactured with vanadium as the interlayer. Vanadium intermediate layers are deposited using both angular and spheroidized vanadium powders. Then, 17-4PH stainless steel is successfully deposited on the vanadium interlayer made from the angular powder. However, on the surface of the vanadium interlayer made from the spheroidized powder, delamination of 17-4PH occurs during deposition. The main cause of this phenomenon is presumed to be the high thickness of the vanadium interlayer and the relatively high level of surface oxidation of the interlayer.

Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium

  • Girginov, Christian;Kozhukharov, Stephan;Tsanev, Alexander;Dishliev, Angel
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.188-203
    • /
    • 2021
  • The specific benefits of the modified films formed on preliminary anodized aluminum, including the versatility of their potential applications impose the need for evaluation of the exploitation reliability of these films. In this aspect, the durability of Cu and Ni modified anodized aluminum oxide (AAO) films on the low-doped AA1050 alloy was assessed through extended exposure to a 3.5% NaCl model corrosive medium. The electrochemical measurements by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 and 720 hours of exposure have revealed that the obtained films do not change their obvious barrier properties. In addition, supplemental analyses of the coatings were performed, in order to elucidate the impact of the AC-deposition of Cu and Ni inside the pores. The scanning electron microscopy (SEM) images have shown that the surface topology is not affected and resembles the typical surface of an etched metal. The subsequent energy dispersive X-ray spectroscopy (EDX) tests have revealed a predominance of Cu in the combined AAO-Cu/Ni layers, whereas additional X-ray photoelectron (XPS) analyses showed that both metals form oxides with different oxidation states due to alterations in the deposition conditions, promoted by the application of AC-polarization of the samples.

Mineralogical-geochemical Characteristics of Manganese Nodules in the Deep Subseafloor Sediments at Site U1371 in the Western South Pacific Gyre Area (남서태평양 환류지역 U1371 심부퇴적층에서 발견된 망가니즈단괴의 광물학적-지화학적 특성 연구)

  • Yang, Kiho;Jung, Jaewoo
    • Ocean and Polar Research
    • /
    • v.44 no.2
    • /
    • pp.139-145
    • /
    • 2022
  • Manganese nodules were recovered within the deep subseafloor sediments (118.22 mbsf) at Site U1371 during International Ocean Discovery Program (IODP) expedition 329 from the South Pacific Gyre (SPG). Because most manganese nodules exist on the seabed surface, nodules present in deep sediments are uncommon. Therefore, the growth origin of manganese nodules was identified through mineralogical and geochemical analyses. The manganese nodule was divided into the concentric layer outside the manganese region and the inner part of the phosphatized region consisting of manganese oxide minerals and carbonate fluorapatite (CFA) minerals, respectively. The two-dimensional element distribution analysis of Mn, Co, Ni, Sr and Cu, Zn with low Mn/Fe ratio confirmed that manganese nodules were formed predominantly by a hydrogenetic process and a biogenic process in certain manganese layers. As a result, the manganese nodule was continuously precipitated in SPG environments of oligotrophic open paleoocean conditions and rapidly buried with siliceous ooze sediments when the SPG changed to a eutrophic environment. It has been confirmed that manganese nodules found within deep subseafloor sediments could be used as a new proxy for the reconstruction of paleooceanographic conditions.

Quasi-nonvolatile Memory Characteristics of Silicon Nanosheet Feedback Field-effect Transistors (실리콘 나노시트 피드백 전계효과 트랜지스터의 준비휘발성 메모리 특성 연구)

  • Seungho Ryu;Hyojoo Heo;Kyoungah Cho;Sangsig Kim
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.386-390
    • /
    • 2023
  • In this study, we examined the quasi-nonvolatile memory characteristics of silicon nanosheet (SiNS) feedback field-effect transistors (FBFETs) fabricated using a complementary metal-oxide-semiconductor process. The SiNS channel layers fabricated by photoresist overexposure method had a width of approximately 180 nm and a height of 70 nm. The SiNS FBFETs operated in a positive feedback loop mechanism and exhibited an extremely low subthreshold swing of 1.1 mV/dec and a high ON/OFF current ratio of 2.4×107. Moreover, SiNS FBFETs represented long retention time of 50 seconds, indicating the quasi-nonvolatile memory characteristics.

Etching Anisotropy Depending on the SiO2 and Process Conditions of NF3 / H2O Remote Plasma Dry Cleaning (NF3 / H2O 원거리 플라즈마 건식 세정 조건 및 SiO2 종류에 따른 식각 이방 특성)

  • Hoon-Jung Oh;Seran Park;Kyu-Dong Kim;Dae-Hong Ko
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.26-31
    • /
    • 2023
  • We investigated the impact of NF3 / H2O remote plasma dry cleaning conditions on the SiO2 etching rate at different preparation states during the fabrication of ultra-large-scale integration (ULSI) devices. This included consideration of factors like Si crystal orientation prior to oxidation and three-dimensional structures. The dry cleaning process were carried out varying the parameters of pressure, NF3 flow rate, and H2O flow rate. We found that the pressure had an effective role in controlling anisotropic etching when a thin SiO2 layer was situated between Si3N4 and Si layers in a multilayer trench structure. Based on these observations, we would like to provide further guidelines for implementing the dry cleaning process in the fabrication of semiconductor devices having 3D structures.

  • PDF

Enhancement of SiO2 Uniformity by High-Pressure Deuterium Annealing (고압 중수소 어닐링을 통한 SiO2 절연체의 균일성 개선)

  • Yong-Sik Kim;Dae-Han Jung;Hyo-Jun Park;Ju-Won Yeon;Tae-Hyun Kil;Jun-Young Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.148-153
    • /
    • 2024
  • As complementary metal-oxide semiconductor (CMOS) is scaled down to achieve higher chip density, thin-film layers have been deposited iteratively. The poor film uniformity resulting from deposition or chemical mechanical planarization (CMP) significantly affects chip yield. Therefore, the development of novel fabrication processes to enhance film uniformity is required. In this context, high-pressure deuterium annealing (HPDA) is proposed to reduce the surface roughness resulting from the CMP. The HPDA is carried out in a diluted deuterium atmosphere to achieve cost-effectiveness while maintaining high pressure. To confirm the effectiveness of HPDA, time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM) are employed. It is confirmed that the absorbed deuterium gas facilitates the diffusion of silicon atoms, thereby reducing surface roughness.

Fabrication of Triboelectric Nanogenerator based on a Composite of P(VDF-TrFE)/Graphene Flower (P(VDF-TrFE)/그래핀플라워 복합소재 기반 마찰전기 나노발전기 제작)

  • Muhammad Saqib;Woo Young Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.913-923
    • /
    • 2023
  • In this study, a triboelectric nanogenerator was fabricated using the composite of teflon-based polymer and graphene flower, which are stable in air and have relatively high electronegativity. The composite was used to fabricate an electronegative layer of a nanogenerator using a spin-coating method. For the electropositive layer, a zinc oxide film was prepared using a sol-gel method. The fabricated triboelectric nanogenerator produced a maximum power of about 44 ㎼. In conclusion, since all the active layers of the triboelectric nanogenerator was made by the solution process, it is scalable to a large area.

SPRAY DEPOSITION OF MECHANICALLY ALLOYED F/M ODS STEEL POWDER

  • SUK HOON KANG;CHANG-KYU RHEE;SANGHOON NOH;TAE KYU KIM
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.607-611
    • /
    • 2019
  • Thermal/cold spray deposition were used for additive manufacture of oxide dispersion strengthened (ODS) steel layers. Mechanically alloyed F/M ODS steel powders (Fe(bal.)-10Cr-1Mo-0.25Ti-0.35Y2O3 in wt.%) were sprayed by a high velocity oxygen fuel (HVOF) and cold spray methods. HVOF, as a thermal method, was used for manufacturing a 1 mm-thick ODS steel layer with a ~95% density. The source to objective distance (SOD) and feeding rate were controlled to achieve sound manufacturing. Y2Ti2O7 nano-particles were preserved in the HVOF sprayed layer; however, unexpected Cr2O3 phases were frequently observed at the boundary area of the powders. A cold spray was used for manufacturing the Cr2O3-free layer and showed great feasibility. The density and yield of the cold spray were roughly 80% and 45%, respectively. The softening of ODS powders before the cold spray was conducted using a tube furnace of up to 1200℃. Microstructural characteristics of the cold sprayed layer were investigated by electron back-scattered diffraction (EBSD), the uniformity of deformation amount inside powders was observed.