• Title/Summary/Keyword: Oxide ion conduction

Search Result 21, Processing Time 0.025 seconds

Intercalation Voltage and Lithium Ion Conduction in Lithium Cobalt Oxide Cathode for Lithium Ion Battery (리튬 이온 전지용 리튬 코발트 산화물 양극에서의 삽입 전압과 리튬 이온 전도)

  • Kim, Dae-Hyun;Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.290-294
    • /
    • 2010
  • We performed a density functional theory study to investigate the intercalation voltage and lithium ion conduction in lithium cobalt oxide for lithium ion battery as a function of the lithium concentration. There were two methods for the intercalation of lithium ions; the intercalation of a lithium ion at a time in the individual layer and the intercalation of lithium ions in all the sites of one layer after all the sites of another layer. The average intercalation voltage was the same value, 3.48 V. However, we found the former method was more favorable than the latter method. The lattice parameter c was increased as the increase of the lithium concentration in the range of x < 0.25 while it was decreased as increase of the lithium concentration in the range of x > 0.25. The energy barrier for the conduction of lithium ion in lithium cobalt oxide was increased as the lithium concentration was increased. We demonstrated that the decrease of the intercalation voltage and increase of the energy barrier as the increase of the lithium concentration caused lower output voltage during the discharge of the lithium ion battery.

Phase Formation and Oxygen Ion Conduction of $La(Ba)Ga(Mg)O_3_\delta$ Perovskite Oxide System ($La(Ba)Ga(Mg)O_3_\delta$계 Perovskite 산화물의 생성상 및 산소이온전도)

  • Lee, Ki-Tae;Kim, Shin;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1056-1061
    • /
    • 1999
  • Phase formation and oxygen ion conduction of La(Ba)Ga(Mg)O3-$\delta$ system was studied, BaLaGa3O7 and BaLaGaO4 formed as a secondary phase above the solubility limit of Ba2+ in La3+ sites. The oxygen ionic conductivity of La(Ba)Ga(Mg)O3-$\delta$ was 0.1 S/cm 80$0^{\circ}C$ The activation energy of the oxygen ion conduction was dependent on temperature. This value was higher at low temperature than at high temperature.

  • PDF

Pt-Ru, Pt-Ni bi-metallic catalysts for heavy hydrocarbon reforming (고 탄화수소 개질을 위한 Pt-Ru, Pt-Ni 이원금속촉매에 관한 연구)

  • Lee, Sanghp;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.97.2-97.2
    • /
    • 2011
  • Pt-Ru and Pt-Ni bimetallic catalysts were prepared and tested for heavy hydrocarbon reforming. Metals were supported on CGO($Ce_{0.8}Gd_{0.2}O_{2.0-x}$) by incipient wetness method. The prepared catalysts were characterized by Temperature programmed reduction(TPR). Oxidative steam reforming of n-dodecane was conducted to compare the activity of the catalysts. The reforming temperature was varied from $500^{\circ}C$ to $800^{\circ}C$ at fixed $O_2$/C of 0.3, $H_2O$/C of 3.0 and GHSV of 5,000/h.Reduction peaks of metal oxide, surface CGO and bulk CGO were detected. Reduction temperature of metal oxide decreased over the bi-metallic catalysts. It is considered that interaction between metals leads to decrease interaction between metal and oxygen. On the other hands, reduction temperatures of surface CGO were dectected in the order of Pt-Ru > Pt-Ni > Pt. low reduction temperatures of surface CGO indicates the low activation energy for oxygen ion conduction to metal. Oxygen ion conduction is known as de-coking mechanism of ionic conducting supports such as CGO. In activity test, fuel conversion was in the same order of Pt-Ru > Pt-Ni > Pt. Especially, 100% of fuel conversion was obtained over Pt-Ru catalysts at $500^{\circ}C$.

  • PDF

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

Effects of Alkali and Chloride ions on the Electric Conduction of ZrF4-Based Heavy Metal Fluoride Glasses (알칼리 및 염소 이온이 지르코늄 플루오르화물 유리의 전기전도에 미치는 영향)

  • 한택상;박순자;조운조;정기호;최상삼
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.601-608
    • /
    • 1989
  • Electrical properties of ZrF4-based heavy metla fluoride glasses were measured by the ac complex impedance method. The effects of alkali and chloride ions addition into fluoro zirconate glasses on the electrical conductivity were examined. The electrical conductivities of fluoride glasses show Arrhenian behavior in the temperature range of the experiment and were decreased by the addition of sodium fluoride up to 15mol%. Mixed alkali substitution resulted in conductivity minimum at intermediate composition which is commonly observed as mixed alkali effect' in alkali oxide glasses. Chloride ion substituted for fluoride ion was found to lower the conductivity.

  • PDF

The Cycling Performance of Graphite Electrode Coated with Tin Oxide for Lithium Ion Battery (리튬이온전지용 주석산화물이 도포된 흑연전극의 싸이클 성능)

  • Kang, Tae-Hyuk;Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2002
  • Tin oxide was coated on graphite particle by sol-gel method and an electrode with this material having microcrystalline structure for lithium ion battery was obtained by heat treatment in the range $400-600^{\circ}C$. The content of tin oxide was controlled within the range of $2.25wt\%\~11.1wt\%$. The discharge capacity increased with the content of tin oxide and also initial irreversible capacity increased. The discharge capacity of tin oxide electrode showed more than 350 mAh/g at the initial cycle and 300 mAh/g after the 30th cycle in propylene carbonate(PC) based electrolyte whereas graphite electrode without surface modification showed 140 mAh/g. When the charge and discharge rate was changed from C/5 to C/2, The discharge capacity of tin oxide and graphite electrode showed $92\%\;and\;77\%$ of initial capacity, respectively. It has been considered that such an enhancement of electrode characteristics was caused because lithium $oxide(Li_2O)$ passive film formed from the reaction between tin oxide and lithium ion prevented the exfoliation of graphite electrode and also reduced tin enhanced the electrical conduction between graphite particles to improve the current distribution of electrode.

The Synthesis of Lithium Lanthanum Titanium Oxide for Solid Electrolyte via Ultrasonic Spray Pyrolysis (초음파 분무 열분해법을 이용한 고체전해질용 Lithium Lanthanum Titanium Oxide 제조)

  • Jaeseok, Roh;MinHo, Yang;Kun-Jae, Lee
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.485-491
    • /
    • 2022
  • Lithium lanthanum titanium oxide (LLTO) is a promising ceramic electrolyte because of its high ionic conductivity at room temperature, low electrical conductivity, and outstanding physical properties. Several routes for the synthesis of bulk LLTO are known, in particular, solid-state synthesis and sol-gel method. However, the extremely low ionic conductivity of LLTO at grain boundaries is one of the major problems for practical applications. To diminish the grain boundary effect, the structure of LLTO is tuned to nanoscale morphology with structures of different dimensionalities (0D spheres, and 1D tubes and wires); this strategy has great potential to enhance the ion conduction by intensifying Li diffusion and minimizing the grain boundary resistance. Therefore, in this work, 0D spherical LLTO is synthesized using ultrasonic spray pyrolysis (USP). The USP method primarily yields spherical particles from the droplets generated by ultrasonic waves passed through several heating zones. LLTO is synthesized using USP, and the effects of each precursor and their mechanisms as well as synthesis parameters are analyzed and discussed to optimize the synthesis. The phase structure of the obtained materials is analyzed using X-ray diffraction, and their morphology and particle size are analyzed using field-emission scanning electron microscopy.

A Study on the Behavior of Charged Particles of $(1-x)(SrPb)(CaMg)TiO_3-Bi_2O_3{\cdot}3TiO_2$ Ceramics ($(1-x)(SrPb)(CaMg)TiO_3-xBi_2O_3{\cdot}3TiO_2$ 세라믹의 하전입자 거동에 관한 연구)

  • Kim, Chung-Hyeok;Choi, Woon-Shik;Jung, Il-Hyung;Chung, Kue-Hye;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.34-37
    • /
    • 1992
  • In this paper, the $(SrPb)(CaMg)TiO_3$-xBi_2O_3{\cdot}3TiO_2$ ceramics with paraelectric properties were fabricated by the mixed oxide method. In order to investigate the behavior of charged particles, the characteristics of electrical conduction and thermally stimulated current were measured respectively. As a result on characteristics of the electrical conduction, the leakage current was increased as measuring temperature was increased. At room temperature, the conduction current was divided into the three steps as a function of DC electric field. The first step was Ohmic region due to ionic conduction, below 15[kV/cm]. The second step was showed a saturation which seems to be related to a depolarizing field occuring in field-enforced ferroelectric phase, between 15[kV/cm] and 40[kV/cm]. The third step was attributed to Child's law related to spare charge which injected from electrode, above 40[kV/cm]. Thermally stimulated currents(TSC) spectra with various biasing fields exhibited three distinguished peaks that were denoted as ${\alpha}$, ${\alpha}'$ and ${\beta}$ peak, each of which appeared at nearby -30, 20 and 95[$^{\circ}C$] respectively. It is confirmed that the a peak was due to trap electron trapped in the grainboundary, and ${\alpha}'$ peak that was observed above only 1.5[kV/mm] was attributed to field-enforced ferroelectric polarization. The origin of ${\beta}$ peak was identified as ion migration which caused the degradation.

  • PDF