• Title/Summary/Keyword: Oxide gas sensor

Search Result 280, Processing Time 0.026 seconds

Metal-Insulator Transition of Vanadium Dioxide Based Sensors (바나듐 산화물의 금속-절연체 전이현상 기반 센서 연구)

  • Baik, Jeong Min
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.314-319
    • /
    • 2014
  • Here, we review the various methods for the preparation of vanadium dioxide ($VO_2$) films and nanowires, and their potential applications to the sensors such as gas sensor, strain sensor, and temperature sensor. $VO_2$ is an interesting material on account of its easily accessible and sharp Mott metal-insulator transition (MIT) at ${\sim}68^{\circ}C$ in the bulk. The MIT is also triggered by the electric field, stress, magnetic field etc. This paper involves exceptionally sensitive hydrogen sensors based on the catalytic process between hydrogen molecules and Pd nanoparticles on the $VO_2$ surface, and fast responsive sensors based on the self-heating effects which leads to the phase changes of the $VO_2$. These features will be seen in this paper and can enable strategies for the integration of a $VO_2$ material in advanced and complex functional units such as logic gates, memory, FETs for micro/nano-systems as well as the sensors.

Characterization of VO2 thick-film critical temperature sensors by heat treatment conditions (열처리조건에 따른 VO2 후막 급변온도센서의 특성연구)

  • Song, K.H.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.407-412
    • /
    • 2007
  • For $VO_{2}$ sensors applicable to temperature measurement by using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were investigated systematically as a function of the annealing condition. The starting materials, vanadium pentoxide ($V_{2}O_{5}$) powders, were mixed with vehicle to form paste. This paste was screen-printed on $Al_{2}O_{3}$ substrates and then $VO_{2}$ thick films were heat-treated at $450^{\circ}C$ to $600^{\circ}C$, respectively, for 1 hr in $N_{2}$ gas atmosphere for the reduction. As results of the temperature vs. resistance property measurements, the electrical resistance of the $V_{2}O_{5}$ sensor in phase transition range was decreased by $10^{3.9}$ order. The presented critical temperature sensor could be used in fire-protection and control systems.

Fabrication on Microheater Flow Sensors Using Membrane Structure and Its Characteristics (맴브레인 구조를 이용한 미세발열체형 유량센서의 제작과 그 특성)

  • 정귀상;노상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.996-1000
    • /
    • 1998
  • This paper describes the characteristics of Pt microheater using aluminum oxide films as medium layer and its application to flow sensors. Pt microheater have heating temperature of $390^{\circ}C$ at heating power of 1.2 W. Output voltages of flow sensors which were fabricated by integrating sensing-part with heating-part increase as gas flow rate and its conductivity increase. At $O_2$ flow rate of 2000 sccm, heating power of 0.8 W, output voltage of flow sensor is 101 mV under bridge-applied voltage of 5 V.

  • PDF

High Oxygen Sensitivity of Nanocrystalline Ceria Prepared by a Thermochemical Process

  • Lee, Dong-Won;Yu, Ji-Hoon;Lim, Tae-Soo;Jang, Tae-Suk
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.416-417
    • /
    • 2006
  • Nanostructured ceria powder was synthesized by a thermochemical process and investigated its applicability for an oxygen gas sensor. An amorphous precursor powders prepared by spray drying a cerium-nitrate solution were transformed successfully into nanostructured ceria by heat-treatment in air atmosphere. The powders were a loose agglomerated structure with extremely fine $CeO_2$ particles about 15 nm in size, resulting in a very high specific surface area $(110\;m^2/g)$. The oxygen sensitivity and the response time $t_{90}$ measured at sintered sample at $1000^{\circ}C$ was about -0.25 and very short, i.e., $3{\sim}5$ seconds, respectively.

  • PDF

Removal of Anodic Aluminum Oxide Barrier Layer on Silicon Substrate by Using Cl2 BCl3 Neutral Beam Etching

  • Kim, Chan-Gyu;Yeon, Je-Gwan;Min, Gyeong-Seok;O, Jong-Sik;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.480-480
    • /
    • 2011
  • 양극산화(anodization)는 금속을 전기화학적으로 산화시켜 금속산화물로 만드는 기술로서 최근 다양한 크기의 나노 구조를 제조하는 기술로 각광받고 있으며, 이러한 기술에 의하여 얻어지는 anodic aluminum oxide(AAO)는 magnetic data storage, optoelectronic device, sensor에 적용될 수 있는 nano device 뿐만 아니라 nanostructure를 제조하기 위한 template 및 mask로써 최근 광범위 하게 연구되고 있다. 또한, AAO는 Al2O3의 단단한 구조를 가진 무기재료이므로 solid mask로써 다른 porous materials 보다 뛰어난 특성을 갖고 있다. 또한 electron-beam lithography 및 block co-polymer 에 의한 patterning 과 비교하여 매우 경제적이며, 재현성이 우수할 뿐만 아니라 대면적에서 나노 구조의 크기 및 형상제어가 비교적 쉽기 때문에 널리 사용되고 있다. 그러나, AAO 형성 시 생기게 되는 반구형 모양의 barrier layer는 물질(substance)과 기판과의 direct physical and electrical contact을 방해하기 때문에 해결해야 할 가장 큰 문제점 중 하나로 알려져 있다. 따라서 본 연구에서는 실리콘 기판위의 형성된 AAO의 barrier layer를 Cl/BCl3 gas mixture에서 Neutral Beam Etching (NBE)과 Ion Beam Etching (IBE) 로 각각 식각한 후 그 결과와 비교하였다. NBE와 IBE 모두 Cl2/BCl3 gas mixture에서 BCl3 gas의 첨가량이 60% 일 경우 etch rate이 가장 높게 나타났고, optical emission spectroscopy (OES)로 Cl2/BCl3 플라즈마 내의 Cl radical density와 X-ray photoelectron spectroscopy (XPS)로 AAO 표면 위를 관찰한 결과 휘발성 BOxCly의 형성이 AAO 식각에 크게 관여함을 확인 할 수 있었다. 또한, NBE와 IBE 실험한 다양한 Cl2/BCl3 gas mixture ratio 에서 AAO가 식각이 되지만, 이온빔의 경우 나노사이즈의 AAO pore의 charging에 의해 pore 아래쪽의 위치한 barrier layer를 어떤 식각조건에서도 제거하지 못하였다. 하지만, NBE에서는 BCl3-rich Cl2/BCl3 gas mixture인 식각조건에서 AAO pore에 휘발성 BOxCly를 형성하면서 barrier layer를 제거할 수 있었다.

  • PDF

Sensing Properties of Ga-doped ZnO Nanowire Gas Sensor

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.78-81
    • /
    • 2015
  • Pure ZnO and ZnO nanowires doped with 3 wt.% Ga (‘3GZO’) were grown by pulsed laser deposition in a furnace system. The doping of Ga in ZnO nanowires was analyzed by observing the optical and chemical properties of the doped nanowires. The diameter and length of nanowires were under 200 nm and several ${\mu}m$, respectively. Changes of significant resistance were observed and the sensitivities of ZnO and 3GZO nanowires were compared. The sensitivities of ZnO and 3GZO nanowire sensors measured at 300℃ for 1 ppm of ethanol gas were 97% and 48%, respectively.

Mechanical characteristics of polycrystalline 3C-SiC thin films using Ar carrier gas by APCVD (순 아르콘 캐리어 가스와 APCVD로 성장된 다결정 3C-SiC 박막의 기계적 특성)

  • Han, Ki-Bong;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.319-323
    • /
    • 2007
  • This paper describes the mechanical characteristics of poly 3C-SiC thin films grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC thin film was deposited by APCVD method using only Ar carrier gas and single precursor HMDS at $1100^{\circ}C$. The elastic modulus and hardness of poly 3C-SiC thin films were measured using nanoindentation. Also, the roughness of surface was investigated by AFM. The resulting values of elastic modulus E, hardness H and the roughness of the poly 3C-SiC film are 305 GPa, 26 GPa and 49.35 nm respectively. The mechanical properties of the grown poly 3C-SiC film are better than bulk Si wafers. Therefore, the poly 3C-SiC thin film is suitable for abrasion, high frequency and MEMS applications.

스마트 호기 센서 응용 금속 산화물 반도체 나노입자 연구 동향

  • Yu, Ran;Lee, U-Yeong
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.38-48
    • /
    • 2018
  • This paper reports a comprehensive review of the state-of-the-art in research on the enhancement of sensing properties for the detection of gases in exhaled breath. Daily health monitoring and early diagnosis of specific diseases via the analysis of exhaled breath is possible. Because biomarkers in exhaled breath are emitted in a very small amount, it is necessary to develop highly sensitive gas sensors. In recent years, a number of researches have been carried out using various strategies for the enhancement of sensing properties such as doping, catalyst, hollow sphere, heterojunction, size effect. We introduced each strategy and summarized recent progress on sensing properties for detection of biomarkers in exhaled breath.

Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection (고감도 H2S 감지를 위한 SnO2 장식된 Cr2O3 nanorods 이종구조)

  • Jae Han Chung;Yun-Haeng Cho;Junho Hwang;Su hyeong Lee;Seunggi Lee;See-Hyung Park;Sungwoo Sohn;Donghwi Cho;Kwangjae Lee;Young-Seok Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • The creation of vertically aligned one-dimensional (1D) nanostructures through the decoration of n-type tin oxide (SnO2) on p-type chromium oxide (Cr2O3) constitutes an effective strategy for enhancing gas sensing performance. These heterostructures are deposited in multiple stages using a glancing angle deposition technique with an electron beam evaporator, resulting in a reduction in the surface porosity of the nanorods as SnO2 is incorporated. In comparison to Cr2O3 films, the bare Cr2O3 nanorods exhibits a response 3.3 times greater to 50 ppm H2S at 300℃, while the SnO2-decorated Cr2O3 nanorods demonstrate an eleven-fold increase in response. Furthermore, when subjected to various gases (CH4, H2S, CO2, H2), a notable selectivity toward H2S is observed. This study paves the way for the development of p-type semiconductor sensors with heightened selectivity and sensitivity towards H2S, thus advancing the prospects of gas sensor technology.