• Title/Summary/Keyword: Oxide gas sensor

Search Result 280, Processing Time 0.022 seconds

Preparation of Nanocolumnar In2O3 Thin Films for Highly Sensitive Acetone Gas Sensor

  • Han, Soo Deok;Song, Young Geun;Shim, Young-Seok;Lee, Hae Ryong;Yoon, Seok-Jin;Kang, Chong-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.383-387
    • /
    • 2016
  • Well-ordered nanocolumnar indium oxide ($In_2O_3$) thin films have been successfully fabricated by glancing angle deposition (GAD) using an e-beam evaporator. Nanocolumnar structures have a porous and large surface area with a narrow neck between nanocolumns, which allows them to detect minute amounts of gases. The nanocolumnar $In_2O_3$ thin films were fabricated by the GAD process at five different positions, viz. top, bottom, center, left, and right in a four inch substrate holder. There was a divergence in the thickness and the base resistance of each sensor. However, all the sensors exhibited extremely high sensitivity that was greater than $10^3$ times the change in electrical resistance after being exposed to 50 ppm of acetone gas at $300^{\circ}C$. Furthermore, the nanocolumnar $In_2O_3$ sensors displayed an extremely low detection limit (1.2 ppb) in dry atmosphere as well as in high humidity (80%). We demonstrated that the GAD nanocolumnar $In_2O_3$ sensors have an enormous potential for many applications owing to their particularly simple and reliable fabrication process.

Pd-doped $SnO_2$-based oxide semiconductor thick-film gas sensors prepared by three different catalyst-addition processes

  • Lee, Kyu-Chung;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.72-77
    • /
    • 2009
  • Three different procedures for adding Pd compounds to $SnO_2$ particles have been investigated. These processes are: (1) coprecipitation; (2) dried powder impregnation; and (3) calcined powder impregnation. The microstructures of $SnO_2$ particles have been analyzed by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). In the coprecipitaion method, the process does not restrain the growth of $SnO_2$ particles and it forms huge agglomerates. In the dried powder impregnation method, the process restrains the growth of $SnO_2$ particles and the surfaces of the agglomerates have many minute pores. In the calcined powder impregnation method, the process restrains the growth of $SnO_2$ particles further and the agglomerates have a lot more minute pores. The sensitivity ($S=R_{air}/R_{gas}$) of the $SnO_2$ gas sensor made by the calcined powder impregnation process shows the highest value (S = 21.5 at 5350 ppm of $C_3H_8$) and the sensor also indicates the lowest operating temperature of around $410^{\circ}C$. It is believed that the best result is caused by the plenty of minute pores at the surface of the microstructure and by the catalyst Pd that is dispersed at the surface rather than the inside of the agglomerate. Schematic models of Pd distribution in and on the three different $SnO_2$ particles are presented.

Fabrication of C2H2 Gas Sensors Based on Ag/ZnO-rGO Hybrid Nanostructures and Their Characteristics (Ag/ZnO-rGO 하이브리드 나노구조 기반 C2H2 가스센서의 제작과 그 특성)

  • Lee, Kwan-Woo;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.41-46
    • /
    • 2015
  • In this work, pure hierarchical ZnO structure was prepared using a simple hydrothermal method, and Ag nanoparticles doped hierarchical ZnO structure was synthesized uniformly through photochemical route. The reduced graphene oxide (rGO) has been synthesized by typical Hummer's method and reduced by hydrazine. Prepared Ag/ZnO nanostructures are uniformly dispersed on the surface of rGO sheets using ultrasonication process. The synthesized samples were characterized by SEM, TEM, EDS, XRD and PL spectra. The average size of prepared ZnO microspheres was around $2{\sim}3{\mu}m$ and showed highly uniform. The average size of doped-Ag nanoparticles was 50 nm and decorated into ZnO/rGO network. The $C_2H_2$ gas sensing properties of as-prepared products were investigated using resistivity-type gas sensor. Ag/ZnO-rGO based sensors exhibited good performances for $C_2H_2$ gas in comparison with the Ag/ZnO. The $C_2H_2$ sensor based on Ag/ZnO-rGO had linear response property from 3~1000 ppm of $C_2H_2$ concentration at working temperature of $200^{\circ}C$. The response values with 100 ppm $C_2H_2$ at $200^{\circ}C$ were 22% and 78% for Ag/ZnO and Ag/ZnO-rGO, respectively. In additions, the sensor still shows high sensitivity and quick response/recovery to $C_2H_2$ under high relative humidity conditions. Moreover, the device shows excellent selectivity towards to $C_2H_2$ gas at optimal working temperature of $200^{\circ}C$.

fabrication of DMMP Thick Film Gas Sensor Based on SnO2 (산화주석을 기반으로 한 DMMP 후막가스센서 제작)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1217-1223
    • /
    • 2003
  • Nerve gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas is dimethyl methyl phosphonate(C$_3$ $H_{9}$ $O_3$P, DMMP) that is simulant gas of nerve gas. Sensing materials were Sn $O_2$ added a-Al$_2$ $O_3$ with 0∼20wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor device was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Total size of device was 7${\times}$10${\times}$0.6㎣. Crystallite size & phase identification and morphology of fabricated Sn $O_2$ powders were analyzed by X-ray diffraction and by a scanning electron microscope, respectively. Fabricated sensor was measured as flow type and resistance change of sensing material was monitored as real time using LabVIEW program. The best sensitivity was 75% at adding 4wt.% $\alpha$-Al$_2$ $O_3$, operating temperature 30$0^{\circ}C$ to DMMP 0.5ppm. Response and recovery time were about 1 and 3min., respectively. Repetition measurement was very good with $\pm$3% in full scale.TEX>$\pm$3% in full scale.

Porous SnO2 Films Fabricated Using an Anodizing Process (양극산화법에 의한 다공성 SnO2 피막)

  • Han, Hye-Jeong;Choi, Jae-Ho;Min, Seok-Hong
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.503-510
    • /
    • 2006
  • The measurement of specific gases is based on the reversible conductivity change of sensing materials in semiconductor type gas sensors. For an application as gas sensors of high sensitivity, porous $SnO_2$ films have been fabricated by anodizing of pure Sn foil in oxalic acid and characteristics of anodic tin oxide films have been investigated. Pore diameter and distribution were dependent on process conditions such as electrolyte concentration, applied voltage, anodizing temperature, and time. Characteristics of anodic films were explained with current density-time curves.

Development of a MEMS-based H2S Sensor with a High Detection Performance and Fast Response Time

  • Dong Geon Jung;Junyeop Lee;Dong Hyuk Jung;Won Oh Lee;Byeong Seo Park;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.207-212
    • /
    • 2023
  • H2S is a toxic and harmful gas, even at concentrations as low as hundreds of parts per million; thus, developing an H2S sensor with excellent performance in terms of high response, good selectivity, and fast response time is important. In this study, an H2S sensor with a high response and fast response time, consisting of a sensing material (SnO2), an electrode, a temperature sensor, and a micro-heater, was developed using micro-electro-mechanical system technology. The developed H2S sensor with a micro-heater (circular type) has excellent H2S detection performance at low H2S concentrations (0-10 ppm), with quick response time (<16 s) and recovery time (<65 s). Therefore, we expect that the developed H2S sensor will be considered a promising candidate for protecting workers and the general population and for responding to tightened regulations.

SnO2 Hollow Hemisphere Array for Methane Gas Sensing

  • Hieu, Nguyen Minh;Vuong, Nguyen Minh;Kim, Dojin;Choi, Byung Il;Kim, Myungbae
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.451-457
    • /
    • 2014
  • We developed a high-performance methane gas sensor based on a $SnO_2$ hollow hemisphere array structure of nano-thickness. The sensor structures were fabricated by sputter deposition of Sn metal over an array of polystyrene spheres distributed on a planar substrate, followed by an oxidation process to oxidize the Sn to $SnO_2$ while removing the polystyrene template cores. The surface morphology and structural properties were examined by scanning electron microscopy. An optimization of the structure for methane sensing was also carried out. The effects of oxidation temperature, film thickness, gold doping, and morphology were examined. An impressive response of ~220% was observed for a 200 ppm concentration of $CH_4$ gas at an operating temperature of $400^{\circ}C$ for a sample fabricated by 30 sec sputtering of Sn, and oxidation at $800^{\circ}C$ for 2 hr in air. This high response was enabled by the open structure of the hemisphere array thin films.

Al Doping Effect of Pd/TiO2 for Improved Hydrogen Detection (수소 감지 성능 향상을 위한 Pd/TiO2 분말에서의 Al 도핑 효과)

  • Lee, Yeongan;Seo, Hyungtak
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.207-210
    • /
    • 2014
  • $TiO_2$ oxide semiconductor is being widely studied in various applications such as photocatalyst and photosensor. Pd/$TiO_2$ gas sensor is mainly used to detect $H_2$, CO and ethanol. This study focus on increasing hydrogen detection ability of Pd/$TiO_2$ in room temperature through Al-doping. Pd/$TiO_2$ was fabricated by the hydrothermal method. Contacting to Aluminum (Al) foil led to Al doping effect in Pd/$TiO_2$ by thermal diffusion and enhanced hydrogen sensing response. $TiO_2$ nanoparticles were sized at ~30 nm of diameter from scanning electron microscope (SEM) and maintained anatase crystal structure after Al doping from X-ray diffraction analysis. Presence of Al in $TiO_2$ was confirmed by X-ray photoelectron spectroscopy at 73 eV. SEM-energy dispersive spectroscopy measurement also confirmed 2 wt% Al in Pd/$TiO_2$ bulk. The gas sensing test was performed with $O_2$, $N_2$ and $H_2$ gas ambient. Pd/Al-doped $TiO_2$ did not response $O_2$ and $N_2$ gas in vacuum except $H_2$. Finally, the normalized resistance ratio ($R_{H2on}/R_{H2off}$) of Pd/Al-doped $TiO_2$ increases about 80% compared to Pd/$TiO_2$.

Effects of Additives on the DMMP Sensing Behavior of SnO2 Nanoparticles Synthesized by Hydrothermal Method

  • Kim, Hong-Chan;Hong, Seong-Hyeon;Kim, Sun-Jung;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.294-299
    • /
    • 2011
  • $SnO_2$ nanoparticles were synthesized by a hydrothermal method and gas sensors were fabricated using nanoparticles to detect dimethyl methylphosphonate(DMMP) gas. The prepared $SnO_2$ nanoparticles exhibited a high response(72 at $500^{\circ}C$) to 5 ppm DMMP gas compared to commercial $SnO_2$ nanopowders, but their recovery was relatively poor. Various metals(Ni, Sb, Nb) were added to the $SnO_2$ nanoparticles to improve their recovery properties. The focus of this study was to investigate the effects of metal oxide additives on DMMP sensing behavior in $SnO_2$ nanoparticles.

Gas Sensing Properties of Pt Doped Fe2O3 Nanoparticles Fabricated by Sol-Gel Method (Sol-Gel 방법을 이용하여 제작된 Pt이 첨가된 Fe2O3 나노 입자의 가스 감지 특성)

  • Jang, Min-Hyung;Lim, Yooseong;Choi, Seung-Il;Park, Ji-In;Hwang, Namgyung;Yi, Moonsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.288-293
    • /
    • 2017
  • $Fe_2O_3$ is one of the most important metal oxides for gas sensing applications because of its low cost and high stability. It is well-known that the shape, size, and phase of $Fe_2O_3$ have a significant influence on its sensing properties. Many reports are available in the literature on the use of $Fe_2O_3$-based sensors for detecting gases, such as $NO_2$, $NH_3$, $H_2S$, $H_2$, and CO. In this paper, we investigated the gas-sensing performance of a Pt-doped ${\varepsilon}$-phase $Fe_2O_3$ gas sensor. Pt-doped $Fe_2O_3$ nanoparticles were synthesized by a Sol-Gel method. Platinum, known as a catalytic material, was used for improving gas-sensing performance in this research. The gas-response measurement at $300^{\circ}C$ showed that $Fe_2O_3$ gas sensors doped with 3%Pt are selective for $NO_2$ gas and exhibita maximum response of 21.23%. The gas-sensing properties proved that $Fe_2O_3$ could be used as a gas sensor for nitrogen dioxide.