• 제목/요약/키워드: Oxide dispersion strengthened alloy

검색결과 25건 처리시간 0.019초

순수 타이타늄 기반 산화물분산강화 합금의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Oxide Dispersion Strengthened alloy Based on Commercially Pure Titanium)

  • 박태성;김정한
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.327-330
    • /
    • 2018
  • This study is conducted as a preliminary research to verify the feasibility of Ti-based Oxide dispersion strengthened (ODS) alloy. Pure-Ti powder is mixed with $Y_2O_3$ powder and subsequently, mechanically alloyed at $-150^{\circ}C$. The Ti-based ODS powder is hot-isostatically pressed and subsequently hot-rolled for recrystallization. The microstructure consists of elongated grains and Y excess fine particles. The oxide particle size is larger than that of the typical Fe-based ODS steel. Tensile test shows that the tensile ductility is approximately 25%, while the strength is significantly higher than that of pure Ti. The high-temperature hardness of the Ti-ODS alloy is also significantly higher than that of pure Ti at all temperatures, while being lower than that of Ti-6Al-4V. The dimple structure is well developed, and no evidence of cleavage fracture surface is observed in the fracture surface of the tensile specimen.

Fe-Cr-Al 기 산화물 분산강화 합금의 미세조직에 미치는 분말제조 공정 영향 (Effect of Powder Synthesis Method on the Microstructure of Oxide Dispersion Strengthened Fe-Cr-Al Based Alloys)

  • 박성현;오승탁
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.507-511
    • /
    • 2017
  • An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of $Y_2O_3$ particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and $1100^{\circ}C$ for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at $1100^{\circ}C$ showed a more homogeneous microstructure. In the case of sintering at $1100^{\circ}C$, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.

산화물 분산강화 동합금의 열처리에 따른 미세조직 및 기계적 특성 변화 (Effect of Annealing on Microstructural and Mechanical Property Variation of the Oxide-Dispersion-Strengthened Cu alloy)

  • 김용석
    • 한국분말재료학회지
    • /
    • 제13권1호
    • /
    • pp.25-32
    • /
    • 2006
  • The alumina dispersion-strengthened (DS) C15715 Cu alloy fabricated by a powder metallurgy route was annealed at temperatures ranging from $800^{\circ}C\;to\;1000^{\circ}C$ in the air and in vacuum. The effect of the annealing on microstructural stability and room-temperature mechanical properties of the alloy was investigated. The microstructure of the cold rolled OS alloy remained stable until the annealing at $900^{\circ}C$ in the air and in vacuum. No recrystallization of original grains occurred, but the dislocation density decreased and newly formed subgrains were observed. The alloy annealed at $1000^{\circ}C$ in the air experienced recrystallization and grain growth took place, however annealing in vacuum at $1000^{\circ}C$ did not cause the microstructural change. The mechanical property of the alloy was changed slightly with the annealing if the microstructure remained stable. However, the strength of the specimen that was recrystallized decreased drastically.

MA 316L ODS 및 Wet 316L ODS 스테인리스강에서 충격에너지에 미치는 소결 공정의 영향 (Effects of the Sintering Variable on Impact Energy in MA 316L ODS and Wet 316L ODS Stainless Steels)

  • 김성수;한창희;장진성
    • 한국분말재료학회지
    • /
    • 제17권2호
    • /
    • pp.113-122
    • /
    • 2010
  • Two kinds of oxide-dispersion-strengthened (ODS) 316L stainless steel were manufactured using a wet mixing process(wet) and a mechanical alloying method (MA). An MA 316L ODS was prepared by a mixing of metal powder and a mechanical alloying process. A wet 316L ODS was manufactured by a wet mixing with 316L stainless steel powder. A solution of yttrium nitrate was dried after being in the wet 316L ODS alloy. The results showed that carbon and oxygen were effectively reduced during the degassing process before the hydroisostatic process (HIP) in both alloys. It appeared that the effect of HIP treatment on increase in impact energy was pronounced in the MA 316L ODS alloy. The MA 316L ODS alloy showed a higher yield strength and a smaller elongation, when compared to the wet 316L ODS alloy. This seemed to be attributed to the enhancement of bonding between oxide and matrix particles from HIP and to the presence of a finer oxide of about 20 nm from the MA process in the MA 316L ODS alloy.

Ni5Y 합금상이 형성된 Ni계 산화물 분산강화 아토마이징 분말의 밀링 거동 분석 (Analysis on Milling Behavior of Oxide Dispersion Strengthened Ni-based Atomizing Powder with Ni5Y Intermetallic Phase)

  • 박천웅;변종민;최원준;김영도
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.101-106
    • /
    • 2019
  • Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better high-temperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the $Ni_5Y$ intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the $Ni_5Y$ is the intermetallic phase. As the milling time increased, the $Ni_5Y$ intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.

A novel approach for manufacturing oxide dispersion strengthened (ODS) steel cladding tubes using cold spray technology

  • Maier, Benjamin;Lenling, Mia;Yeom, Hwasung;Johnson, Greg;Maloy, Stuart;Sridharan, Kumar
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1069-1074
    • /
    • 2019
  • A novel fabrication method of oxide dispersion strengthened (ODS) steel cladding tubes for advanced fast reactors has been investigated using the cold spray powder-based materials deposition process. Cold spraying has the potential advantage for rapidly fabricating ODS cladding tubes in comparison with the conventional multi-step extrusion process. A gas atomized spherical 14YWT (Fe-14%Cr, 3%W, 0.4%Ti, 0.2% Y, 0.01%O) powder was sprayed on a rotating cylindrical 6061-T6 aluminum mandrel using nitrogen as the propellant gas. The powder lacked the oxygen content needed to precipitate the nanoclusters in ODS steel, therefore this work was intended to serve as a proof-of-concept study to demonstrate that free-standing steel cladding tubes with prototypical ODS composition could be manufactured using the cold spray process. The spray process produced an approximately 1-mm thick, dense 14YWT deposit on the aluminum-alloy tube. After surface polishing of the 14YWT deposit to obtain desired cladding thickness and surface roughness, the aluminum-alloy mandrel was dissolved in an alkaline medium to leave behind a free-standing ODS tube. The as-fabricated cladding tube was annealed at $1000^{\circ}C$ for 1 h in an argon atmosphere to improve the overall mechanical properties of the cladding.

EFFECTS OF ADDING NIOBIUM AND VANADIUM TO Fe-BASED OXIDE DISPERSION STRENGTHENED ALLOY

  • CHUN WOONG PARK;WON JUNE CHOI;JONG MIN BYUN;YOUNG DO KIM
    • Archives of Metallurgy and Materials
    • /
    • 제65권4호
    • /
    • pp.1265-1268
    • /
    • 2020
  • In this study, the effects of adding niobium and vanadium to Fe-based oxide dispersion strengthened alloys are confirmed. The composition of alloys are Fe-20Cr-1Al-0.5Ti-0.5Y2O3 and Fe-20Cr-1Al-0.5Ti-0.3V-0.2Nb-0.5Y2O3. The alloy powders are manufactured by using a planetary mill, and these powders are molded by using a magnetic pulsed compaction. Thereafter, the powders are sintered in a tube furnace to obtain sintered specimens. The added elements exist in the form of a solid solution in the Fe matrix and suppress the grain growth. These results are confirmed via X-ray diffraction and scanning electron microscopy analyses of the phase and microstructure of alloys. In addition, it was confirmed that the addition of elements, improved the hardness property of Fe-based oxide dispersion strengthened alloys.

Development of Fe-12%Cr Mechanical-Alloyed Nano-Sized ODS Heat-Resistant Ferritic Alloys

  • 김익수;최병영
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.265-265
    • /
    • 1999
  • The development of mechanical alloying (MA)-oxide dispersion strengthened (ODS) heat-resistant ferritic alloys of Fe-12%Cr with W, Ti and Y₂O₃additions were carried out. Fe-12%Cr alloys with 3%W, 0.4%Ti and 0.25% Y₂O₃additions showed a much finer and more uniform dispersion of oxide particles among the alloy system studied. Nano-sized oxides dispersed in the alloys suppress the grain growth during annealing at a high temperature and resulted in the remarkable improvement of creep strength. The oxide phase was identified as a complex oxide type of Y-Ti-O.

Alloy 617계 산화물 분산강화(ODS) 합금의 제조와 인장특성 (Fabrication and Tensile Properties of Alloy 617 base ODS Alloy)

  • 민형기;강석훈;김태규;한창희;김도향;장진성
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.482-487
    • /
    • 2011
  • Alloy 617, Ni-22Cr-12Co-9Mo base oxide dispersion strengthened alloy was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Uniaxial tensile tests were performed at room temperature and at $700^{\circ}C$. Compared with the conventional Alloy 617, ODS alloy showed much higher yield strength and tensile strength, but lower elongation. Fracture surfaces of the tensile tested specimens were investigated in order to find out the mechanism of fracture mode at each test temperature. Grain adjustment during tensile deformation was analyzed by electron backscattered diffraction mapping, inverse pole figures and TEM observation.

Effects of Precipitates and Oxide Dispersion on the High-temperature Mechanical Properties of ODS Ni-Based Superalloys

  • Noh, GooWon;Kim, Young Do;Lee, Kee-Ahn;Kim, Hwi-Jun
    • 한국분말재료학회지
    • /
    • 제27권1호
    • /
    • pp.8-13
    • /
    • 2020
  • In this study, we investigated the effects of precipitates and oxide dispersoids on the high-temperature mechanical properties of oxide dispersion-strengthened (ODS) Ni-based super alloys. Two ODS Ni-based super alloy rods with different chemical compositions were fabricated by high-energy milling and hot extrusion process at 1150 ℃ to investigate the effects of precipitates on high-temperature mechanical properties. Further, the MA6000N alloy is an improvement over the commercial MA6000 alloy, and the KS6000 alloy has the same chemical composition as the MA6000 alloy. The phase and microstructure of Ni-based super alloys were investigated by X-ray diffraction and scanning electron microscopy. It was found that MC carbide precipitates and oxide dispersoids in the ODS Ni-based super alloys developed in this study may effectively improve high-temperature hardness and creep resistance.