• Title/Summary/Keyword: Oxide coating

Search Result 828, Processing Time 0.022 seconds

UV-curable polyester-acrylate coating with antimony doped tin oxide nanoparticles

  • Sung, Si-Hyun;Kim, Dae-Su
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.478-481
    • /
    • 2010
  • Antimony doped tin oxide (ATO) nanoparticles were added as nanofillers to UV-curable polyester-acrylate (PEA) resin for coating to improve thermal, mechanical, and electrical properties. In this study, ATO nanoparticles were grafted by 3-glycidyloxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane respectively to improve dispersion and interfacial adhesion. The physical properties and surface scratch hardness of the UV-curable nanocomposite coating were improved considerably by introducing the modified ATO nanoparticles.

  • PDF

Failure of Ceramic Coatings Subjected to Thermal Cyclings (열피로에 의한 세라믹 코팅재의 파손)

  • Han Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.1-5
    • /
    • 2005
  • An experimental study was conducted to develop an understanding of failure of ceramic coating when subjected to a thermal cycling. Number of cycles to failure were decreased as the coating thickness and the oxide of bond coat were increased. Using the finite element method, an analysis of stress distribution in ceramic coatings was performed. Radial compressive stress was increased in the top/bond coat interface with increasing coating thickness and oxide of bond coat.

Nitrogen Monoxide Gas Sensing Properties of Copper Oxide Thin Films Fabricated by a Spin Coating Method (스핀코팅법으로 제작한 산화구리 박막의 일산화질소 가스 감지 특성)

  • Hwang, Hyeonjeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.171-176
    • /
    • 2015
  • We present the detection characteristics of nitrogen monoxide(NO) gas using p-type copper oxide(CuO) thin film gas sensors. The CuO thin films were fabricated on glass substrates by a sol-gel spin coating method using copper acetate hydrate and diethanolamine as precursors. Structural characterizations revealed that we prepared the pure CuO thin films having a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the NO gas sensing measurements that the p-type CuO thin film gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as $100^{\circ}C$. Additionally, these CuO thin film gas sensors were found to show reversible and reliable electrical response to NO gas in a range of operating temperatures from $60^{\circ}C$ to $200^{\circ}C$. It is supposed from these results that the p-type oxide semiconductor CuO thin film could have significant potential for use in future gas sensors and other oxide electronics applications using oxide p-n heterojunction structures.

Investigation of Functional 6061 Aluminum Alloy Oxide Film with Anodization Voltage and its Corrosion Resistance

  • Jisoo Kim;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.399-407
    • /
    • 2023
  • This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.

Flame Synthesis of Silica-Coated Iron Oxide Nanoparticles and Their Characterization

  • Jun, Kimin;Yang, Sangsun;Lee, Jeonghoon;Pikhitsa, Peter V.;Choi, Mansoo
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.209-219
    • /
    • 2013
  • We have used the modified diffusion flame burner to synthesize silica coated iron oxide nanoparticles having enhanced superparamagnetic property. Silica-encapsulated iron oxide particles were directly observed using a high resolution transmission electron microscope. From the energy dispersive X-ray spectroscopy (EDS) and zeta potential measurements, the iron oxide particles were found to be completely covered by a silica coating layer. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements revealed that the iron oxide core consists of ${\gamma}-Fe_2O_3$ rather than ${\alpha}-Fe_2O_3$. Our magnetization measurements support this conclusion. Biocompatibility test of the silica-coated iron oxide nanoparticles is also conducted using the protein adsorption onto the coated particle.

The Effect of Oxide Layer Formed on TiN Coated Ball and Steel Disk on Friction Characteristics in Various Sliding Conditions (미끄럼조건에 따라 TiN 코팅볼과 스틸디스크에 형성되는 산화막이 마찰특성에 미치는 영향)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.459-466
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk on friction characteristics in various sliding conditions were investigated. AISI52100 steel ball was used for the substrate of coated ball specimens, which were prepared by depositing TiN coating with 1(m in coating thickness. AISI1045 steel was used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. From the test results, the frictional characteristic between the two materials was predominated by iron oxide layer that formed on wear tract of counter-body and this layer caused friction transition and high friction. And the adhesive wear occurred from steel disk to TiN coated ball caused the formation of oxide layer on counter parts between the two materials.

THE EFFECTS OF SEALING ON THE PLASMA-SPRAYED OXIDE-BASED COATINGS

  • Kim, Hyung-Jun;Sidoine Odoul;Kweon, Young-Gak
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.53-58
    • /
    • 2002
  • Electrical insulation and mechanical properties of the plasma sprayed oxide ceramic coatings were studied before and after the sealing treatment of the ceramic coatings. Plasma sprayed A1$_2$O$_3$-TiO$_2$ coating as the reference coating was sealed using three commercial sealants based on polymer. Penetration depth of the sealants to the ceramic coating was evaluated directly from the optical microscope using a fluorescent dye. It is estimated that the penetration depth of the sealants to the ceramic coating is from 0.2 to 0.5 mm depending on the sealants used. The preliminary test results with a DC puncture tester imply that the dielectric breakdown voltage mechanism of plasma sprayed ceramic coatings has been determined to be a corona mechanism. Dielectric breakdown voltage of the as-sprayed and as-ground samples have shown a linear trend with regard to the thickness showing an average dielectric strength of 20 kV/mm for the thickness scale studied. It is also shown that grinding the coating before sealing and adding fluorescent dye do not agent the penetration depth of sealants. All of the microhardness, two-body abrasive wear resistance, bond strength, and surface roughness of the ceramic coating after the sealing treatment are improved. The extent of improvement is different from the sealants used. However, three-point bending stress of the ceramic coating after the sealing treatment is decreased. This is attributed to the reduced micro-crack toughening effect since the cracks propagate easily through the lamellar of the coating without crack deflection and/or branching after the sealing treatment.

  • PDF

Fracture Behavior of Fe Crucible in Molten Aluminum Coated with Al and Anodized Al (수명을 향상시키기 위해 Al 메탈 코팅과 양극산화처리된 Steel 도가니의 파괴 거동)

  • Cha, Taemin;Shin, Byung-Hyun;Hwang, Myungwon;Kim, Do-Hyung;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.34-39
    • /
    • 2018
  • Steel crucible used for molten Al has a problem of very limited lifetime because of the interaction between Fe and molten Al. This study was performed to improve the lifetime of steel crucible for molten Al by coating metallic Al and by further anodizing treatment to form thick and uniform anodic oxide films. The lifetime of the steel crucible was improved slightly by Al coating from 30 to 40 hours by metallic Al coating and largely to 120 hours by coating the surface with anodic oxide film. The improved lifetime was attributed to blocking of the reaction between Fe and molten Al with the help of anodic oxide layer with more than 20 um thickness on the crucible surface. The failure of the steel crucible arises from the formation of intermetallic compounds and pores at the steel/Al interface.

Hot Corrosion and Thermally Grown Oxide Formation on the Coating of Used IN738LC Gas Turbine Blade (사용된 IN738LC 가스 터빈 블레이드 코팅층의 고온 부식 및 Thermally Grown Oxide 형성 거동)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Ahn, Jong Kee;Lee, Jae Hyun;Choi, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.200-209
    • /
    • 2022
  • In this study, defects generated in the YSZ coating layer of the IN738LC turbine blade are investigated using an optical microscope and SEM/EDS. The blade YSZ coating layer is composed of a Y-Zr component top coat layer and a Co component bond coat layer. A large amount of Cr/Ni component that diffused from the base is also measured in the bond coat. The blade hot corrosion is concentrated on the surface of the concave part, accompanied by separation of the coating layer due to the concentration of combustion gas collisions here. In the top coating layer of the blade, cracks occur in the vertical and horizontal directions, along with pits in the top coating layer. Combustion gas components such as Na and S are contained inside the pits and cracks, so it is considered that the pits/cracks are caused by the corrosion of the combustion gases. Also, a thermally grown oxide (TGO) layer of several ㎛ thick composed of Al oxide is observed between the top coat and the bond coat, and a similar inner TGO with a thickness of several ㎛ is also observed between the bond coat and the matrix. A PFZ (precipitate free zone) deficient in γ' (Ni3Al) forms as a band around the TGO, in which the Al component is integrated. Although TGO can resist high temperature corrosion of the top coat, it should also be considered that if its shape is irregular and contains pore defects, it may degrade the blade high temperature creep properties. Compositional and microstructural analysis results for high-temperature corrosion and TGO defects in the blade coating layer used at high temperatures are expected to be applied to sound YSZ coating and blade design technology.

Joining Characteristics of Plasma Sprayed BSCCO Superconducting Coatings (플라즈마 용사 BSCCO(Bismuth Strontium Calcium Copper Oxide) 초전도 피막의 접합 특성)

  • Park, Jung-Sik;Cho, Chang-Eun;Ko, Young-Bong;Park, Kwang-Soon;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.181-186
    • /
    • 2013
  • We performed plasma spraying for 2001 (Bi:Cu = 2:1), 0212 (Sr:Ca:Cu = 2:1:2) oxide powders. $Bi_2Sr_2CaCu_2Ox$ (2212) superconductor has been prepared by PMP-AT (partial melting process-annealing treatment). The 2212 phase is synthesized between Sr-Ca-Cu oxide coating layer (0212) and Bi-Cu oxide coating layer (2001) by movement of partial melted Bi on 2001 layer and the diffusion reaction (Cu, Sr, Ca) after PMP-AT. There are two different coating layers on joining process. The one is ABAB coating layers and the other is BAAB coating layers by arrangement of 2001 (A), 0212 (B) layers. We performed heat treatment these two different coating layers processes under same PMP-AT conditions. We obtained Bi-2212 superconducting layers at each experimental condition, and the result of MPMS, the critical temperature was showed about 78 K. But the microstructure images and result of EDS as each experimental variable were showed about the qualitatively different Bi-2212 superconducting phases. We also deduced the generation mechanism of Bi-2212 superconducting layer as a result of these experimental data, microstruc ture images, EDS data and phase diagram.