• Title/Summary/Keyword: Oxide Scale

Search Result 488, Processing Time 0.032 seconds

Effect of abutment neck taper and cement types on the amount of remnant cement in cement-retained implant restorations: an in vitro study

  • Park, Yeon-Hee;Kim, Kyoung-A;Lee, Jung-jin;Kwon, Tae-min;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.3
    • /
    • pp.162-172
    • /
    • 2022
  • PURPOSE. The present study aims to analyze the effect of abutment neck taper and types of cement on the amount of undetected remnant cement of cement-retained implant prostheses. MATERIALS AND METHODS. Three neck taper angles (53°, 65°, 77°) and three types of cement (RMGI: resin-modified glass ionomer, ZPC: zinc phosphate cement, ZOE: zinc oxide eugenol cement) were used. For each group, the surface percentage was measured using digital image and graphic editing software. The weight of before and after removing remnant cement from the abutment-crown assembly was measured using an electronic scale. Two-way ANOVA and Duncan & Scheffe's test were used to compare the calculated surface percentage and weight of remnant cement (α = .05). RESULTS. There were significant differences in remnant cement surface percentage and weight according to neck taper angles (P < .05). However, there were no significant differences in remnant cement surface percentage and weight on types of cement. No interaction was found between neck taper angles and types of luting cement (P > .05). The wide abutment with a small neck taper angle showed the most significant amount of remnant cement. And the types of luting cement did not influence the amount of residual cement. CONCLUSION. To remove excess cement better, the emergence profile of the crown should be straight to the neck taper of the abutment in cement-retained implant restoration.

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.

Arsenic Removal Mechanism of the Residual Slag Generated after the Mineral Carbonation Process in Aqueous System (광물탄산화 공정 이후 발생하는 잔사슬래그의 수계 내 비소 제거 기작)

  • Kim, Kyeongtae;Latief, Ilham Abdul;Kim, Danu;Kim, Seonhee;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.377-388
    • /
    • 2022
  • Laboratory-scale experiments were performed to identify the As removal mechanism of the residual slag generated after the mineral carbonation process. The residual slags were manufactured from the steelmaking slag (blast oxygen furnace slag: BOF) through direct and indirect carbonation process. RDBOF (residual BOF after the direct carbonation) and RIBOF (residual BOF after the indirect carbonation) showed different physicochemical-structural characteristics compared with raw BOF such as chemical-mineralogical properties, the pH level of leachate and forming micropores on the surface of the slag. In batch experiment, 0.1 g of residual slag was added to 10 mL of As-solution (initial concentration: 203.6 mg/L) titrated at various pH levels. The RDBOF showed 99.3% of As removal efficiency at initial pH 1, while it sharply decreased with the increase of initial pH. As the initial pH of solution decreased, the dissolution of carbonate minerals covering the surface was accelerated, increasing the exposed area of Fe-oxide and promoting the adsorption of As-oxyanions on the RDBOF surface. Whereas, the As removal efficiency of RIBOF increased with the increase of initial pH levels, and it reached up to 70% at initial pH 10. Considering the PZC (point of zero charge) of the RIBOF (pH 4.5), it was hardly expected that the electrical adsorption of As-oxyanion on surface of the RIBOF at initial pH of 4-10. Nevertheless it was observed that As-oxyanion was linked to the Fe-oxide on the RIBOF surface by the cation bridge effect of divalent cations such as Ca2+, Mn2+, and Fe2+. The surface of RIBOF became stronger negatively charged, the cation bridge effect was more strictly enforced, and more As can be fixed on the RIBOF surface. However, the Ca-products start to precipitate on the surface at pH 10-11 or higher and they even prevent the surface adsorption of As-oxyanion by Fe-oxide. The TCLP test was performed to evaluate the stability of As fixed on the surface of the residual slag after the batch experiment. Results supported that RDBOF and RIBOF firmly fixed As over the wide pH levels, by considering their As desorption rate of less than 2%. From the results of this study, it was proved that both residual slags can be used as an eco-friendly and low-cost As remover with high As removal efficiency and high stability and they also overcome the pH increase in solution, which is the disadvantage of existing steelmaking slag as an As remover.

Emission Rate of Greenhouse Gases from Bedding Materials of Cowshed Floor: Lab-scale simulation study (우사깔짚에서 발생되는 온실가스 배출량 산정: 모의 실험결과)

  • Cho, Won Sil;Lee, Jin Eui;Park, Kyu Hyun;Kim, Jeong Dae;Ra, Chang Six
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • To know the emission amount of greenhouse gases from bedding materials of cowshed floor, the emission rates of methane ($CH_4$) and nitrous oxide ($N_2O$) gases from a simulated cowshed floor (SCF) with sawdust that manure loading rate into the bedding material could be accurately controlled were assessed in this study. The manure loading rates of Korean beef and Holstein dairy cattle into the SCF of $0.258m^2$ surface area with 10 to 15 cm height sawdust were $1.586kg/m^2/d$ and $3.588kg/m^2/d$, respectively, and those were calculated on the basis of "Standard model for sustainable livestock" and "Data for excretion amount of manure from livestock". All experiments were done in triplicates in three different seasons (May to July, Sep. to Nov., and Feb. to Apr.) using 12 SCFs. The effects of bedding material thickness on $CH_4$ and $N_2O$ emission from SCFs for both Korean beef cattle and Holstein dairy cattle were not statistically significant (p<0.05). Emission amount of $CH_4$ and $N_2O$ per square meter of SCF for Holstein dairy cattle was 7.5 and 1.2 times higher than that of Korean beef cattle, respectively. The yearly $CH_4$ amount per head was 17.7 times higher in Holstein dairy cattle, obtaining 130.4 g/head/year from SCF for Holstein dairy cattle and 7.4 g/head/year from SCF for Korean beef cattle, and $N_2O$ was also 3.8 times higher in Holstein dairy cattle (3,267 g/head/year in Korean beef cattle and 14,719 g/head/year in Holstein dairy cattle). However, the $N_2O$-N per loaded nitrogen into SCF was higher in Korean beef cattle, having 0.2148 and 0.1632 kg $N_2O$-N/kg N in Korean beef cattle and Holstein dairy cattle, respectively, and those values were 3.07 and 2.33 times higher than that of Intergovernmental Panel on Climate Change (IPCC) 2006 guideline (GL) (0.07 kg $N_2O$-N/kg N).

Ferucarbotran-Enhanced Hepatic MRI at 3T Unit: Quantitative and Qualitative Comparison of Fast Breath-hold Imaging Sequences (간의 3T 자기공명영상에서 초상자성산화철 조영증강 급속호흡정지영상기법들간의 양적 및 질적 비교평가)

  • Cho, Kyung-Eun;Yu, Jeong-Sik;Chung, Jae-Joon;Kim, Joo-Hee;Kim, Ki-Whang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2010
  • Purpose : To compare the relative values of various fast breath-hold imaging sequences for superparamagnetic iron-oxide (SPIO)-enhanced hepatic MRI for the assessment of solid focal lesions with a 3T MRI unit. Materials and Methods : 102 consecutive patients with one or more solid malignant hepatic lesions were evaluated by spoiled gradient echo (GRE) sequences with three different echo times (2.4 msec [GRE_2.4], 5.8 msec [GRE_5.8], and 10 msec [GRE_10]) for $T2^*$-weighted imaging in addition to T2-weighted turbo spin echo (TSE) sequence following intravenous SPIO injection. Image qualities of the hepatic contour, vascular landmarks and artifacts were rated by two independent readers using a four-point scale. For quantitative analysis, contrast-to-noise ratio (CNR) was measured in 170 solid focal lesions larger than 1 cm (107 hepatocellular carcinomas, nine cholangiocarcinomas and 54 metastases). Results : GRE_5.8 showed the highest mean points for hepatic contour, vascular anatomy and imaging artifact presence among all of the subjected sequences (p<0.001) and was comparable (p=0.414) with GRE_10 with regard to lesion conspicuity. The mean CNRs were significantly higher (p<0.001) in the following order: GRE_10 ($24.4{\pm}14.5$), GRE_5.8 ($14.8{\pm}9.4$), TSE ($9.7{\pm}6.3$), and GRE_2.4 ($7.9{\pm}6.4$). The mean CNRs of CCCs and metastases were higher than those of HCCs for all imaging sequences (p<0.05). Conclusion : Regarding overall performances, GRE using a moderate echo time of 5.8 msec can provide the most reliable data among the various fast breath-hold SPIO-enhanced hepatic MRI sequences at 3T unit despite the lower CNR of GRE_5.8 compared to that of GRE_10.

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

CO2 Mineral Carbonation Reactor Analysis using Computational Fluid Dynamics: Internal Reactor Design Study for the Efficient Mixing of Solid Reactants in the Solution (전산유체역학을 이용한 이산화탄소 광물 탄산화 반응기 분석: 용액 내 고체 반응물 교반 향상을 위한 내부 구조 설계)

  • Park, Seongeon;Na, Jonggeol;Kim, Minjun;An, Jinjoo;Lee, Chaehee;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.612-620
    • /
    • 2016
  • Aqueous mineral carbonation process, in which $CO_2$ is captured through the reaction with aqueous calcium oxide (CaO) solution, is one of CCU technology enabling the stable sequestration of $CO_2$ as well as economic value creation from its products. In order to enhance the carbon capture efficiency, it is required to maximize the dissolution rate of solid reactants, CaO. For this purpose, the proper design of a reactor, which can achieve the uniform distribution of solid reactants throughout the whole reactor, is essential. In this paper, the effect of internal reactor designs on the solid dispersion quality is studied by using CFD (computational fluid dynamics) techniques for the pilot-scale reactor which can handle 40 ton of $CO_2$ per day. Various combination cases consisting of different internal design variables, such as types, numbers, diameters, clearances and speed of impellers and length and width of baffles are analyzed for the stirred tank reactor with a fixed tank geometry. By conducting sensitivity analysis, we could distinguish critical variables and their impacts on solid distribution. At the same time, the reactor design which can produce solid distribution profile with a standard deviation value of 0.001 is proposed.

Zn/Co ZIF derived synthesis of Co-doped ZnO nanoparticles and application as high-performance trimethylamine sensors (Co가 도핑된 ZnO 나노입자의 Zn/Co ZIF 유도 합성 및 고성능 트리메틸아민 센서로의 응용)

  • Yoon, Ji-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.222-227
    • /
    • 2018
  • $Zn_{1-x}Co_x$ Zeolitic Imidazolate Framework (ZIF) (x = 0~0.05) were prepared by the co-precipitation of $Zn^{2+}$ and $Co^{2+}$ using 2-methylimidazole, which were converted into pure and Co-doped ZnO nanoparticles by heat treatment at $600^{\circ}C$ for 2 h. Homogeneous Zn/Co ZIFs were achieved at x < 0.05 owing to the strong coordination of the imidazole linker to $Zn^{2+}$ and $Co^{2+}$, facilitating atomic-scale doping of Co into ZnO via annealing. By contrast, heterogeneous Zn/Co ZIFs were formed at $x{\geq}0.05$, resulting in the formation of $Co_3O_4$ second phase. To investigate the potential as high-performance gas sensors, the gas sensing characteristics of pure and Co-doped ZnO nanoparticles were evaluated. The sensor using 3 at% Co-doped ZnO exhibited an unprecedentedly high response and selectivity to trimethylamine, whereas pure ZnO nanoparticles did not. The facile, bimetallic ZIF derived synthesis of doped-metal oxide nanoparticles can be used to design high-performance gas sensors.

Effects of 3rd Element Additions on the Oxidation Resistance of TiAi Intermetallics (합금원소 첨가가 TiAI계의 내산화성에 미치는 영향)

  • Kim, Bong-Gu;Hwang, Seong-Sik;Yang, Myeong-Seung;Kim, Gil-Mu;Kim, Jong-Jip
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.669-680
    • /
    • 1994
  • Oxidation behaviour of TiAl intermetallic compounds with the addition of Cr, V, Si, Mo, or Nb was investigated at 900~$1100^{\circ}C$ under the atmospheric environment. The reaction products were examined by XRD, SEM equipped with WDX. The weight gain by continuous oxidation increased with the addition of Cr or V, but there was less weight gain when Mo, Si or Nb was added individually. he oxidation rate of Cr- or V-added TiAl was always larger than that of TiAI. However, oxidation rate of Si-, Mo- or Nb-added TiAl was almost same or smaller than that of TiAI. Thus, it is concluded that the addition of Cr or V did not improve the oxidation resistance, whereas the addition of Si, Mo or Nb improved the oxidation resistance. Oxides formed on TiAl with Mo, Si, and Nb were found to be more protective, resulting from the decrease in diffusion rate of the alloying elements and oxygen. Nb strengthened the tendency to form $AI_{2}O_{3}$ in the early stage of oxidation, due to the continuous $AI_{2}O_{3}$ layer formation and dense $Tio_{2}+AI_{2}O_{3}$ layer. According to the Pt-marker test of TiAI- 5wt%Nb, oxygen diffused mainly inward while oxides were formed on the substrate surface. Upon thermal cyclic oxidation at $900^{\circ}C$, it is shown that the addition of Cr or Nb improved the adherence of oxide scale to the substrate.

  • PDF

Effect of Intraoperative Continuous I.V. Fentanyl on Tourniquet Induced Cardiovascular Changes and Postoperative Preemptive Analgesia in Total Knee Replacements (슬관절 전치환술 중 지속 정주한 Fentanyl이 압박띠로 인한 심혈관계 변화 및 수술 후 선행 진통에 미치는 효과)

  • Lee, Jong Won;Jun, Jong Hun;Kim, Young Sun;Cheong, Mi Ae;Shim, Jae Chol;Kim, Kyo Sang
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.165-170
    • /
    • 2005
  • Background: It is difficult to treat tourniquet-induced hypertension despite adequate anesthesia, and the mechanism of that is not known. And it may be possible that intraoperative continuous infusion of opioid induces preemptive analgesia postoperatively. We investigated the effect of intraoperative continuous i.v. fentanyl on tourniquet induced cardiovascular changes and postoperative preemptive analgesia in total knee replacements. Methods: Sixty patients were randomly assigned to two groups; In study group ($1.5{\mu}g/kg$ loading and $0.5{\mu}g/kg/hr$ continuous infusion of fentanyl before skin incision and tourniquet inflation) and control group (no treatment). Anesthesia was maintained with enflurane (1-2 MAC) and 50% nitrous oxide in oxygen. Arterial pressure and heart rate were compared between two groups. They received postoperative pain treatment with patient-controlled analgesia (PCA) with fentanyl during the postoperative 48 hours after total knee replacement. Visual analog scale (VAS) scores at either rest or movement were used to assess pain. Total fentanyl dose delivered, number of PCA requests, supplemental analgesics, overall satisfaction score and adverse events were evaluated. Results: There were no significant differences between the two groups on cardiovascular changes by tourniquet induced pain effect. VAS, PCA delivered dose and PCA demands at movement in the 24-48 hour decreased in study group compared with control group (P < 0.05). But there were no significant differences between the two groups on the other time periods except 24-48 hour's patient satisfaction and adverse events. Conclusions: We suggest that intraoperative continuous i.v. fentanyl infusion dose not affect cardiovascular change by tourniquet induced pain. But it may induce preemptive analgesia postoperatively.