• 제목/요약/키워드: Oxide Hydroxide

검색결과 220건 처리시간 0.032초

폴리카보네이트 용융중합 초기의 촉매기반 에스터 교환반응 동력학 (Catalyzed Transesterification Kinetics in Early Stage of Polycarbonate Melt Polymerization)

  • 정주연;이지목;홍성권;이진국;정현민;김용석
    • 폴리머
    • /
    • 제39권2호
    • /
    • pp.235-239
    • /
    • 2015
  • 본 연구에서는 디올 단량체로서 바이오 유래 isosorbide 및 bisphenol A가 적용된 폴리카보네이트의 단일 및 공중합체를 얻기 위한 촉매로서 LiOH, $Cu(acac)_2$ 및 n-butyltin hydroxide oxide hydrate를 각각 적용하여 용융중합 초기 단계에서 에스터 교환반응의 동력학 분석을 실시하여 촉매활성도를 비교하였다. 단일 중합의 경우, $Cu(acac)_2$가 가장 큰 촉매활성도를 나타내었으나, 서로 다른 두 가지 디올 단량체가 적용된 용융 공중합의 경우에는 촉매의 적용 메커니즘 및 단량체의 화학구조에 의존하여 LiOH의 촉매활성이 가장 큼을 확인하였다. 이러한 연구결과는 최근 관심이 집중된 바이오 유래 친환경 폴리카보네이트용 촉매선정에 활용 가능함을 제시한다.

알루미나수화물(水和物)의 결정전이(結晶轉移)에 미치는 습도(濕度)의 영향(影響) (Effect of Humidity on Polymorphic Transformation of Hydrous Aluminum Oxide)

  • 이계주;류병태
    • Journal of Pharmaceutical Investigation
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 1983
  • The effect of humidity on crystallization and polymorphic transformation of hydrous aluminum oxide under various humidity at $37^{\circ}$ was examined by means of X-ray diffraction, scanning electron micrograph, IR spectra and DTA. The humidity was an important factor influencing crystallization of hydrous aluminum oxide. The growth or crystal was strongly accelerated by humidity. The aging process is assumed that it is composed of two seperate steps, an increase of the diffraction around $36{\sim}42^{\circ}$, and an appearance and its development of the peak at $18{\sim}20^{\circ}$ of $2{\theta}$ value. The former is considered to be nucleation and the latter correspond to the growth period on crystallization. The crystalline form of aging products was various depending on the degree of humidity, directly it leads to the eventual formation of bayerite in more than 72%, $b{\"{o}}hmite$ in 50% and resembled to Nordstandite in 0% relative humidity, respectively but once formed, it was mostly stable in each surroundings and does not transform to the other more stable form in solid state even after aging for five years. The mechanism responsible for aging is further polymerization process of six-membered rings by deprotonation-dehydration reaction in which positively charged polynuclear hydroxy aluminum complexes formed in the presence of moisture are joined at their edges by double hydroxide bridges.

  • PDF

Al-isopropoxide로부터 제조한 AlN 세라믹스의 기계적 성질과 미세구조에 미치는 산화물 첨가제의 영향 (Effects of Oxide Additions on Mechanical Properties and Microstructures of AlN Ceramics Prepared from Al-isopropoxide)

  • 이홍림;황해진
    • 한국세라믹학회지
    • /
    • 제27권6호
    • /
    • pp.799-807
    • /
    • 1990
  • In this study, effects of oxide additives on mechanical properties and microstructure of A1N and A1N polytype ceramics were investigated. Fine A1N powder was synthesized by nitriding alumiuim hydroxide prepared from Al-isopropoxide, at 1350$^{\circ}C$ for 10h in N2 atmosphere. By adding 3w/o Y2O3, 0.56w/o CaO, and 10w/o SiO2 to AlN powder, AlN and AlN polytype ceramics were prepared by hot-pressing under the pressure of 30 MPa at 1800$^{\circ}C$ for 1h. AlN ceramics with no additives formed considerable amount of AlON phase, while AlN ceramics doped with Y2O3 or CaO decreased AlON phase and formed Y-Al or Ca-Al oxide compound. AlN+10w/o SiO2(+3w/o Y2O3) composition produced AlON and AlN polytype compound having 21R as a major phase. Room temperature flexural strength of AlN ceramics with no additive was 246MPa, and room temperature flexural strength and critical temperature difference by thermal shock(ΔTc) of AlN ceramics dooped with Y2O3 or CaO were 532MPa/340$^{\circ}C$ and 423MPa/300$^{\circ}C$, respectively. Y2O3 and CaO used as sintering agent played roles of densification and oxygen removal of AlN ceramics, and affected grain growth/grain morphologies of AlN ceramics.

  • PDF

염화아연 수용액과 나트륨계 알칼리 침전제 종류에 따라 합성한 산화아연 결정 분말에 대한 연구 (A study on the zinc oxide crystalline powder synthesized by zinc chloride solution and sodium-based alkali precipitants)

  • 김대원;장대환;김보람
    • 한국결정성장학회지
    • /
    • 제33권1호
    • /
    • pp.15-21
    • /
    • 2023
  • 산화아연 분말을 제조하기 위해 3종류의 나트륨계 알칼리 침전제인 수산화나트륨, 탄산나트륨, 수산화나트륨/탄산수소나트륨을 이용하여 반응에 따른 열역학적 고찰과 아연 침전생성물로부터 산화아연 분말 제조 공정의 차이점을 비교하였다. 나트륨계 알칼리 침전제와의 반응으로 생성된 아연 침전생성물은 각각 히드록시염화아연(Zn5(OH)8Cl2·H2O)과 탄산아연수산화물 (Zn5(OH)6(CO3)2·H2O)임을 XRD를 통해 확인하였다. 나트륨계 알칼리 침전제에 따라 800℃에서 열처리하여 생성된 산화아연 입자 크기를 비교하였다. 혼합된 수산화나트륨 및 탄산수소나트륨의 알칼리 침전제 반응으로 보다 균일한 산화아연 입자를 제조할 수 있었다.

Graphene-like β-Ni(OH)2 나노판 구조의 합성 및 특성

  • 차성민;;유재수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.201.2-201.2
    • /
    • 2015
  • 현대 디지털 사회에서 고효율 에너지와 파워소스에 관한 요구가 커짐에 따라 차세대 에너지 저장 소자에 대한 연구가 계속되고 있다. 그 중 리튬이온 배터리, 슈퍼커패시터, 그리고 연료 전지들이 우리의 일상생활에서 점점 더 중요하게 자리잡아가고 있는데 이런 다양한 에너지 저장소자 중 슈퍼커패시터가 많은 관심을 받고 있다. 이는 긴 수명, 빠른 충-방전 속도, 높은 에너지 밀도, 그리고 안전함 때문이다. 슈퍼커패시터는 에너지 저장 메커니즘에 따라 두 가지로 분류될 수 있는데 전기이중층 커패시터(EDLC)와 슈도커패시터(pseudocapacitor)로 나누어질 수 있다. 슈도커패시터는 active 물질과 전해질 이온 간의 전기화학적 반응으로 인해 EDLC보다 더 많은 에너지를 저장할 수 있다. 그러므로 지금까지 새로운 형태의 슈도용량성 물질을 만들기 위한 노력이 집중되고 있다. 본 연구에서는 전기화학적증착 방법을 통해 graphene-like ${\beta}$-nickel hydroxide (${\beta}-Ni(OH)_2$) 나노판 구조를 전도성 직물에 합성하였다. ${\beta}-Ni(OH)_2$ 슈도커패시터의 유연하고 효율적인 비용의 전극으로서 높은 비정전용량, 우수한 전기화학 가역성, 그리고 뛰어난 사이클 안정성을 보였다. 이런 쉬운 방법으로 유연한 전도성 직물에 합성된 metal hydroxide/oxide 나노구조는 웨어러블 에너지 저장소자와 변환소자 분야에 사용될 것으로 기대된다.

  • PDF

납축전지의 심방전용 극판에 관한 연구 (A Study on the Plate for Deep Discharge in Lead Acid Battery)

  • 정순욱;구본근
    • 한국응용과학기술학회지
    • /
    • 제31권2호
    • /
    • pp.197-202
    • /
    • 2014
  • Positive plate was composed of lead hydroxide via reaction between lead oxide and $H_2O$ and lead sulfate was formed of the reaction of lead hydroxide with sulfuric acid. And its density is $3.8g/cm^3$, $4.0g/cm^3$, $4.2g/cm^3$ and $4.4g/cm^3$ by controlling volume of refined water. Curing of positive plate is done for low ($45^{\circ}C$, 40hr, over 95% of relative humidity) & high ($80^{\circ}C$, 40hr, over 95% of relative humidity) temperature, which created 3BS & 4BS active materials. Experimental result of DOD with 100% life cycle test shows that it was not related to the density of active materials but to the low & high temperature aging of active materials. The test makes us to understand that the crystallization which is made by curing of active materials is a more of a main factor than density of active materials under the deep cycle using circumstances. The active materials which were from the high temperature curing are better for deep cycle performance.

결정질 실리콘 기반 태양광산업에서의 근로자노출 가능 유해인자 (Workers' Possible Exposure Hazards in Solar Energy Industries)

  • 장재길;박현희
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.24-33
    • /
    • 2013
  • Renewable energy industries, including sola cell plants, has been ever increasing ones for reducing fossil fuel consumption and strengthening national energy policy. In this paper we tried to identify occupational health hazards in solar cell-related industries operated in Korea. Poly silicon, silicon ingot and wafer, solar cell and module are major processes for producing solar cells. Poly silicon operations may cause hazards to workers from metal silicon, silanes, silicon, hydro fluoric acid and nitric acid. Solar cells could not be constructed without using metals such as aluminum and silver, acids such as hydrofluoric acid and nitric acid, bases such as sodium hydroxide and potassium hydroxide, and solvent and phosphorus chloride oxide. Workers in module assembly process may exposed to isopropanol, flux, solders that contain lead, tin and/or copper. To prevent occupational exposure to these hazards, it is essential to identify the hazards in each process and educate workers in industries with proper engineering and administrative control measures.

수열합성법을 이용한 BaTiO3 나노분말 합성 (Synthesis of Nano-Size BaTiO3 Powder by Hydrothermal Reaction Method)

  • 심영재;최경진
    • 한국전기전자재료학회논문지
    • /
    • 제28권9호
    • /
    • pp.561-564
    • /
    • 2015
  • Nano-size $BaTiO_3$ powder was synthesized by relatively simple hydrothermal reaction method. Finely dispersed Ti hydroxide precursor was first precipitated using $Ti(SO_4)_2$ and NaOH solution by applying ultrasonic power and washed thoroughly to remove $SO_4{^{2-}}$ and $Na^+$ ion. Then hydrothermal reaction was done at $160^{\circ}C$ for 6 hrs using solution prepared by washed Ti hydroxide precursor slurry and $Ba(OH)_2{\cdot}8H_2O$ with Ti:Ba mole ratio of 1:1. 200 ~ 500 nm size and uniform size distributed $BaTiO_3$ powder was synthesized by relatively low temperature and simple process.

Estimation of Alkali Overdosing in a Lime Neutralization Process for Acid Mine Drainage

  • Cheong, Young-Wook;Cho, Dong-Wan;Lee, Jin-Soo;Hur, Won
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.109-112
    • /
    • 2022
  • Lime has been used for the neutralization of acidic waste because it is cheap and available in large quantities. The resulting sludge often contains a considerable amount of unreacted lime due to alkali overdosing, even during automatic neutralization processes, which mainly arises from the poor solubility of lime. The sludge cake from lime neutralization of Ilkwang Mine also contained high percentages of calcium and magnesium. The elemental content of the sludge cake was compared with those obtained from a simulation of the lime neutralization facility installed at Ilkwang Mine. A Goldsim® model estimated the degree of lime overdosing to be 19.1% based on the fractions of ferrous oxide. The analysis suggests that resolubilization of aluminum hydroxide could occur in the settling basin, in which pH exceeded 10 due to the continued dissolution of the overdosed lime. The present study demonstrated that chemical analysis of sludge combined with process simulation could provide a reasonable estimate of mass balance and chemistry in a neutralization facility for acid mine drainage.

Pore structure evolution characteristics of sandstone uranium ore during acid leaching

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Zhang, Ni;Zhang, Shuwen;Feng, Song
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4033-4041
    • /
    • 2021
  • To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.