• Title/Summary/Keyword: Oxide Fuel

Search Result 1,147, Processing Time 0.027 seconds

A Study on the Formation and Reduction of NOx in 5TPD SRF Boiler (5톤/일 규모 SRF 전용 연소보일러에서의 질소산화물의 생성과 저감에 대한 연구)

  • Yoon, Young-Sik;Park, Dong-Kyu;Gu, Jae-Hoi;Park, Yeong-Su;Seo, Yong-Chil
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.647-652
    • /
    • 2018
  • The emission of nitrogen oxides has a great environmental impact. It leads to Los Angeles type smog, and it recently has attracted attention as a source of ultrafine dust. The main sources of nitrogen oxides are internal combustion engines and industrial boilers. These emission sources are processes that are essential for human industrial activities, so the regulation of original use is impossible. Therefore, special control methods should be applied to reduce NOx emissions into the atmosphere. In this study, we investigated how the supply of ER and urea influences the removal of nitrogen oxides from SRF combustion boilers. Experimental results show that the removal efficiency of nitrogen oxides can be up to 80% under the conditions of ER 2.0 and a urea feed of 0.5 LPM.

Disc Displacement Control of the Emergency Shut-Down Valve for LNG Bunkering (LNG 벙커링용 비상차단 밸브 디스크 변위 제어에 관한 연구)

  • Yoon, Jin Ho;Park, Ju Yeon;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.28-34
    • /
    • 2021
  • Among the currently available types of fuel, LNG emits a relatively small amount of nitrogen oxide and carbon dioxide when it burns in the engine. However, since LNG is a flammable material, leakage during bunkering can lead to accidents, such as fires. Therefore, it is necessary to install a remote operation emergency shut-down (ESD) valve to block the flow and leakage of LNG in an emergency situation that occurs during bunkering. The ESD valve uses a hydraulic driving device consisting of a hydraulic control valve and a hydraulic motor to control globe valve disc displacement, which regulates the flow path for LNG transfer. At this time, there are various nonlinearities in hydraulic driving devices; hence, it is necessary to design a controller with robust control performance against these uncertainties. In this study, modeling of the ESD valve was carried out, and a sliding mode controller to control the displacement of the globe valve disc was designed. As a result, it was confirmed that the designed control performance could be achieved by overcoming nonlinearity characteristics using the designed controller.

Mid-Temperature Operation Characteristics of Commercial Reforming Catalysts: Comparison of Ru-Based and Ni-Based Catalyst (상용 개질촉매의 중온 영역 운전 특성: Ru 촉매와 Ni 촉매 비교)

  • KIM, YOUNGSANG;LEE, KANGHUN;LEE, DONGKEUN;LEE, YOUNGDUK;AHN, KOOKYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Most of the reformer experiments have been conducted only in high-temperature operation conditions above 700℃. However, to design high efficiency solid oxide fuel cell, it is necessary to test actual reaction performance in mid-temperature (550℃) operation areas. In order to study the operation characteristics and performance of commercial reforming catalysts, a reforming performance experiment was conducted on mid-temperature. The catalysts used in this study are Ni-based FCR-4 and Ru-based RuA, RuAL. Experiments were conducted with a Steam-to-carbon ratio of 2.0 to 3.0 under gas hourly space velocity (GHSV) 2,000 to 5,000 hr-1. As a result, RuA and RuAL catalysts showed similar gas composition to the equilibrium regardless of the reforming temperature. However, the FCR-4 catalyst showed a lower hydrogen yield compared to the equilibrium under high GHSV conditions.

Characterization of Groundwater Colloids From the Granitic KURT Site and Their Roles in Radionuclide Migration

  • Baik, Min-Hoon;Park, Tae-Jin;Cho, Hye-Ryun;Jung, Euo Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.279-296
    • /
    • 2022
  • The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10-250 nm and 33-64 ㎍·L-1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.

Physical Propertise of Non-Cement Matrix with Red Mud (레드머드를 혼입한 무시멘트 경화체의 물리적 특성)

  • Kwon, Hyeong-Soon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.93-94
    • /
    • 2023
  • Through the industrial revolution that began in the 18th century, the amount of carbon dioxide in the atmosphere increased rapidly as humans used fossil energy such as coal and oil as fuel for steam engines and factory machines. The amount of carbon dioxide emitted while producing cement, the main material of concrete used in construction, is large enough to account for 5-8% of the world's carbon dioxide emissions. In this study, Non cement-based matrix were used to reduce carbon dioxide emissions from cement production. Red mud is an industrial by-product generated in the manufacturing process of aluminum hydroxide using bauxite, and more than 120 million tons are produced worldwide. In addition, red mud is a porous material that can be physically adsorbed, and causes a photocatalytic reaction of TiO2 to remove harmful substances such as nitrogen oxide formaldehyde in the air and chemically adsorbs ammonia and hydrogen sulfide. Therefore, this study aims to examine the physical properties of the matrix by mixing red mud, an industrial by-product with good adsorption performance, into the Non cement-based matrix.

  • PDF

Experimental and Numerical Study on Flow Characteristics of a Common Exhaust System for Multiple SOFCs (SOFC용 복합 배기 시스템 유동 특성에 관한 실험 및 수치해석적 연구)

  • DAEWOONG JUNG;JONGHYUK YOON;HYOUNGWOON SONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.657-666
    • /
    • 2023
  • In this study, experiments and numerical analysis were conducted to investigate the exhaust gas flow in a common exhaust system of multiple solid oxide fuel cells. The system was fabricated based on KGS code and operated within a pressure range of 0.12 kPa, with flow rates ranging from 79.1 to 103.4 L/min. Numerical modeling was validated with a mean absolute error of 3.8% for pressure results. The study assessed the impact of changes in area ratio and emergency stops on pressure distribution, velocity vectors, and wall shear stress. The findings revealed no significant factors causing high differential pressure or backflow.

Demonstration of Zr Recovery from 50 g Scale Zircaloy-4 Cladding Hulls using a Chlorination Method (50 g 규모의 Zircaloy-4 피복관으로부터 염소화 방법을 이용한 Zr 회수 거동 연구)

  • Jeon, Min Ku;Lee, Chang Hwa;Lee, You Lee;Choi, Yong Taek;Kang, Kweon Ho;Park, Geun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.55-61
    • /
    • 2013
  • The recovery of Zr from Zircaloy-4 (Zry-4) cladding hulls using a chlorination method was demonstrated for complete conversion of Zr into $ZrCl_4$. A chlorination reaction was performed by reacting Zry-4 hulls for 8 h under a 70 cc/min $Cl_2$ + 70 cc/min Ar flow at $380^{\circ}C$. The initial weight of the reactant (51.7 g) decreased to 0.49 g after 8 h of operation, which is only 0.95wt% of the initial weight. The weight of the total reaction products was 121.7 g with a high Zr purity of 99.80wt%. Fe and Sn were identified as major (0.18wt%) and minor (0.02wt%) impurities of the reaction products, respectively. It was also shown that Zr exhibited a high recovery ratio of 96.95wt% with a relatively small experimental loss of 2.34wt%. Observation of the reaction residues revealed that the chlorination reaction was dominant along the longitudinal direction, and surface oxide layers remained as reaction residues. The high purity and recovery ratio of Zr proposed the feasibility of the chlorination technique as an effective hull waste treatment method.

A Study on Combustion Characteristics in terms of the Type of Fuel Supply Device (Feeder) of a Wood Pellet Boiler (목재펠릿보일러의 연료공급 장치의 형태에 따른 연소특성에 관한 연구)

  • Choi, Yun Sung;Euh, Seung Hee;Oh, Kwang Cheol;Kim, Dae Hyun;Oh, Jae Heun
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • This study reports the combustion characteristics, such as burner temperature and the concentration of exhausted gas ($O_2$, $CO_x$, $NO_x$) due to the different types and pitches of the fuel supply feeder of the wood pellet boiler. The 1st grade wood pellets composed of mainly larch have been used for the experiment. In case of using the spring feeder, mean temperature of burner was approximately $821.76^{\circ}C$, and the mean concentration of oxygen, carbon monoxide, carbon dioxide and nitrogen oxide were approximately 8.88%, 93.35ppm, 12.15% and 139.83 ppm, respectively. The test result with the spring feeder was shown to approach the condition of complete combustion compared to that of a screw feeder and were in good agreement with authentication judgement standard. Furthermore, the combustion efficiency was improved according to the growth of screw pitch. The control of air flow rate from the blower and ventilator is needed to achieve the complete combustion.

Study on Corrosion Characteristic of New Nb-containing Zr based Alloys for Fuel cladding (Nb 첨가 핵연료피복관용 Zr 신합금의 부식특성 연구)

  • Choe, Byeong-Gwon;Ha, Seung-Won;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.405-412
    • /
    • 2001
  • Corrosion tests were carried out in $360^{\circ}C$ water and $360^{\circ}C$ 70ppm LiOH solution to investigate the corrosion behavior of new zirconium alloys (Zr-0.4Nb-0.8Sn-xFeCrMn, Zr-0.2Nb-1.1Sn-xFeCrMn, Zr-1.0Nb-xFeCu). Microstructures of tested alloys were analyzed by optical microscope and TEM. The cross-sectional surface and crystalline structure of the oxide layer were analyzed by SEM and XRD. From the results of corrosion test, all the alloys showed higher corrosion rates in $360^{\circ}C$ 70ppm LiOH aqueous solution thats in $360^{\circ}C$ water. Especially, high Nb-containing alloy exhibited the acceleration of corrosion rate in LiOH solution. The low Nb- and Sn-added alloys showed better corrosion resistance than the Sn- free high Nb alloy. from the effect of final annealing on the corrosion, it was observed that the partially recrystallized alloys showed better corrosion resistance than fully recrystallized alloys. This would be related to the size and distribution of the second phase particles.

  • PDF

Corrosion Behavior of $Y_2O_3$ Coating in an Electrolytic Reduction Process (전해환원공정에서 $Y_2O_2$ 코팅층의 부식거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seung;Jeong, Myeong-Soo;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The electrolytic reduction of a spent oxide fuel involves a liberation of the oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the high molten salt. In this study, hot corrosion studies were performed on bare as well as coated superalloy specimens after exposure to lithium molten salt at $675^{\circ}C$ for 216 h under an oxidizing atmosphere. The IN713LC superalloy specimens were sprayed with an aluminized NiCrAlY bond coat and then with an $Y_2O_3$ top coat. The bare superalloy reveals an obvious weight loss due to spalling of the scale by the rapid scale growth and thermal stress. The chemical and thermal stability of the top coat has been found to be beneficial for increasing to the corrosion resistance of the structural materials for handling high temperature lithium molten salts.