• Title/Summary/Keyword: Oxidative stress

Search Result 3,405, Processing Time 0.038 seconds

Antioxidative and Hepatoprotective Effects of Ethanol Extracts from Different Barley Cultivars (보리 품종별 주정 추출물의 항산화 활성 및 간 보호 효과)

  • Yang, Ji Yeong;Ham, Hyeonmi;Lee, Hyun-Jin;Kim, Hyun Young;Woo, So-Yeun;Seo, Woo Duck;Lee, Mi Ja
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.423-429
    • /
    • 2021
  • Barley's nutritional value as a health food is increasing due to its excellent nutritional functionality. In this study, the levels of β-glucan, total polyphenols, and total flavonoids were analyzed in the ethanol extracts of different barley cultivars (Hinchalssal, Heuksoojeongchal, Betaone, Ganghochung, and Saechalssal). Also, the free radical scavenging abilities of 2,2-diphenyl-1-picryl-hydrazil (DPPH) and 2,2'-azino-bis-3-ethylbenzo-thiaxoline-6-sulfonic acid (ABTS) were measured to determine their antioxidant activity. The results confirmed that Betaone extract contained highly activefunctional components and exhibitedantioxidant activity. Next, we evaluated the hepatoprotective and inhibitory effects of reactive oxygen species (ROS) generated by barley ethanol extracts after inducing oxidative stress with tert-butyl hydroperoxide (tBHP) in HepG2 cells. Hinchalssal and Saechalssal extracts showed the most significant cytoprotective effect and also reduced ROS production significantly. These results suggest that Hinchalssal, Saechalssal, and Betaone represent potential natural antioxidant and hepatoprotective agents.

Tat-CIAPIN1 protein prevents against cytokine-induced cytotoxicity in pancreatic RINm5F β-cells

  • Yeo, Hyeon Ji;Shin, Min Jea;Kim, Dae Won;Kwon, Hyeok Yil;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.458-463
    • /
    • 2021
  • Cytokines activate inflammatory signals and are major mediators in progressive β-cell damage, which leads to type 1 diabetes mellitus. We recently showed that the cell-permeable Tat-CIAPIN1 fusion protein inhibits neuronal cell death induced by oxidative stress. However, how the Tat-CIAPIN1 protein affects cytokine-induced β-cell damage has not been investigated yet. Thus, we assessed whether the Tat-CIAPIN1 protein can protect RINm5F β-cells against cytokine-induced cytotoxicity. In cytokine-exposed RINm5F β-cells, the transduced Tat-CIAPIN1 protein elevated cell survivals and reduced reactive oxygen species (ROS) and DNA fragmentation levels. The Tat-CIAPIN1 protein reduced mitogen-activated protein kinases (MAPKs) and NF-κB activation levels and elevated Bcl-2 protein, whereas Bax and cleaved Caspase-3 proteins were decreased by this fusion protein. Thus, the protection of RINm5F β-cells by the Tat-CIAPIN1 protein against cytokine-induced cytotoxicity can suggest that the Tat-CIAPIN1 protein might be used as a therapeutic inhibitor against RINm5F β-cell damage.

The Promoting Effect of Rumex japonicas Houttuyn ethanol extract on Hair Growth

  • Jeong, Jang-won;Kang, Kyung-Hwa;Cho, Sung-Woo
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.27-40
    • /
    • 2020
  • Objectives: This study was conducted to evaluate the hair growth-promoting effects by Rumex japonicas Houttuyn ethanol extract (RJHEE) in C57BL/6N mice and HaCaT cells. Methods: The hair growth effect was examined by topical application of RJHEE on the shaved dorsal skin of C57BL/6 mice. Six-week old mice were depilated and separated in 4 groups; CON (vehicle treatment), MXD (2% Minoxidil), and RJHEE (2% and 4%). The treatments were applied daily for 17 days. The hair growth was determined photographically and the hair density, thickness and length were identified by Folliscope. In dorsal skin tissue, the expression of hair growth-related protein was analyzed by Western blotting. In HaCaT cells, the cell proliferation and the protection against H2O2-induced cell damage by RJHEE were analyzed. Results: Our results indicate that RJHEE promote the hair growth, hair density, thickness and length. RHE activate the Wnt/𝛽-catenin signaling and induced the expression of cell survival-related proteins, such as pERK/ERK and Bcl-2/Bax. In HaCaT, RJHEE accelerated the cell proliferation and protected the H2O2-induced cell damage. Conclusions: Our results strongly suggest that RJHEE promotes hair growth by regulating the activation of Wnt/𝛽-catenin signaling and cell survival signaling and protects oxidative stress-induced hair damage. Therefore, RJHEE has a hair growth activity and can be useful for the treatment of alopecia.

Amelioration of experimental autoimmune encephalomyelitis by Ishige okamurae

  • Ahn, Meejung;Kim, Jeongtae;Yang, Wonjun;Choi, Yuna;Ekanayake, Poornima;Ko, Hyunju;Jee, Youngheun;Shin, Taekyun
    • Anatomy and Cell Biology
    • /
    • v.51 no.4
    • /
    • pp.292-298
    • /
    • 2018
  • Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated autoimmune central nervous system disease characterized by inflammation with oxidative stress. The aim of this study was to evaluate an anti-inflammatory effect of Ishige okamurae on EAE-induced paralysis in rats. An ethanolic extract of I. okamurae significantly delayed the first onset and reduced the duration and severity of hind-limb paralysis. The neuropathological and immunohistochemical findings in the spinal cord were in agreement with these clinical results. T-cell proliferation assay revealed that the ethyl-acetate fraction of I. okamurae suppressed the proliferation of myelin basic protein reactive T cells from EAE affected rats. Flow cytometric analysis showed $TCR{\alpha}{\beta}^+$ T cells was significantly reduced in the spleen of EAE rats with I. okamurae treatment with concurrent decrease of inflammatory mediators including tumor necrosis $factor-{\alpha}$ and cyclooxygenase-2. Collectively, it is postulated that I. okamurae ameliorates EAE paralysis with suppression of T-cell proliferation as well as decrease of pro-inflammatory mediators as far as rat EAE is concerned.

Effects of Eucomiae Cortex on the Depression of Male Aged Mice (두충(杜沖)이 수컷 노화쥐의 우울증에 미치는 효과)

  • Kim, Ho Hyun;Ahn, Sang Hyun;Park, Sun Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • In order to investigate the effects of Eucomiae Cortex extracts on the depression caused by aging, histochemistry and immunohistochemistry were performed on the hippocampus of aged rats and the following results were obtained. Experimental animals were divided into three groups as follows: 8 week old ICR male mice, Aging-elicited group (AE group) and Eucomiae Cortex treatment group (EC group) 50 week old male ICR mice were used. The control group and AE group did not take any treatment and did not restrict diets and negatives. In the EC group, 0.51g/kg of Eucomiae Cortex extract was dissolved in distilled water once a day for 6 months. The Eucomiae Cortex extract reduced pyramidal neuronal damage in C3 hippocampus and dentate gyrus, increased DJ-1, SHH positive responses in aged mouse hippocampus, and 8-OHdG positivity was reduced, ${\beta}$-endorphin positivity was reduced in aged mouse substantia nigra. Therefore, based on the above results, Eucomiae Cortex extract reduces damage of pyramidal neurons in the hippocampus caused by aging, inhibits neuronal cell death, induces proliferation and differentiation of stem cells in the hippocampus, reduces DNA damage-induced oxidative stress, so improves the reduction of hippocampus volume. It is also thought to improves depression due to aging through ${\beta}$-endorphin which enhances mood through the inhibition of pain.

Novel insight into the role of thiamine for the growth of a lichen-associated Arctic bacterium, Sphingomonas sp., in the light (Sphingomonas 속 세균의 명조건 생장에서 티아민의 필수적인 역할)

  • Pham, Nhung;Pham, Khoi;Lee, ChangWoo;Jang, Sei-Heon
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Bacteria in the polar region are under strong light and ultraviolet radiation. In this study, we investigated the effects of light on the growth of a psychrophilic bacterium, Sphingomonas sp. PAMC 26621, isolated from an Arctic lichen Cetraria sp. The growth of the strain in the light was lower than that in the dark. Surprisingly, thiamine increased the growth of Sphingomonas sp. PAMC 26621 in M9 minimal medium under light conditions. Thiamine increased the growth of the strain in a concentration-dependent manner along with ascorbic acid. N-acetylcysteine had no effect on the growth of the strain in the light. Thiamine and ascorbic acid also increased the activities of glucose-6-phosphate dehydrogenase and superoxide dismutase. The results of this study indicate that thiamine provided by the lichen symbiosis system plays an important role in light-induced oxidative stress in this Arctic bacterium as an antioxidant. Our study provide insight into the biochemistry and physiology of Arctic bacteria under strong light and ultraviolet radiation.

The Preventive Effects of Standardized Extract of Zataria multiflora and Carvacrol on Acetaminophen-Induced Hepatotoxicity in Rat - Zataria multiflora and Carvacrol and Hepatotoxicity -

  • Mohebbati, Reza;Paseban, Maryam;Beheshti, Farimah;Soukhtanloo, Mohammad;Shafei, Mohammad Naser;Rakhshandeh, Hasan;Rad, Abolfazl Khajavi
    • Journal of Pharmacopuncture
    • /
    • v.21 no.4
    • /
    • pp.249-257
    • /
    • 2018
  • Objectives: The hepatotoxicity induced by Acetaminophen (AAP) mostly mediated by effect on oxidative stress parameters. The Zataria multiflora (Z.M) is an herbal medicine with well-known antioxidant effect. The aim of this study is investigation of preventive effects of Z.M and Carvacrol (CAR) on AAP-induced hepatotoxicity in rats. Methods: Rats were randomly divided into four groups including: 1) Control, 2) Acetaminophen (AAP), 3) and 4) CAR. The saline, Z.M (200 mg/kg) and CAR (20 mg/kg) were administrated orally for 6 days, after that AAP (600 mg/kg) was administrated in the $7^{th}$ day. Blood sampling was performed on the first and last days. Also, the liver tissue was removed for evaluation of Malondyaldehide (MDA), Thiol content, Superoxide dismutase (SOD) and Catalase (CAT). Total Protein (tPro), Glutamic Oxaloacetic Transaminase (GOT), Glutamic Pyruvic Transaminase (GPT) and Alkaline Phosphatase (ALP) in liver tissue were evaluated. The changes (${\Delta}$) of enzymes activities were presented. Results: The ${\Delta}GOT$, ${\Delta}GPT$ and ${\Delta}ALP$ in CAR group significantly decreased compared to AAP group (P < 0.01 to P < 0.001) and ${\Delta}GPT$ in Z.M group was significantly reduced in comparison with AAP group (P < 0.05). Also, MDA, Thiol, SOD and CAT levels in treated groups were attenuated compared to AAP group (P < 0.05 to P < 0.001). Conclusion: Z.M and CAR have a powerful hepatoprotective effect. CAR is more effective than Z.M. Based on the results. Z.M and CAR could be potent supplementary agents against hepatotoxicity of AAP in patients.

Protective effect of dietary oils containing omega-3 fatty acids against glucocorticoid-induced osteoporosis

  • Elbahnasawy, Amr Samir;Valeeva, Emiliya Ramzievna;El-Sayed, Eman Mustafa;Stepanova, Natalya Vladimirovna
    • Journal of Nutrition and Health
    • /
    • v.52 no.4
    • /
    • pp.323-331
    • /
    • 2019
  • Purpose: Glucocorticoids (GCs) are implicated in secondary osteoporosis, and the resulting fractures cause significant morbidity. Polyunsaturated fatty acids (PUFAs) play a vital role in bone metabolism. However, few trials have studied the impact of omega-3 PUFA-containing oils against GC-induced osteoporosis. Therefore, the present study was undertaken to determine whether supplementation with omega-3 PUFA-containing dietary oils such as fish oil, flaxseed oil or soybean oil can impede the development of GC-induced osteoporosis. Methods: The fatty acids (FAs) content of oils was determined using gas chromatography. Male rats were subdivided into 5 groups (8 rats each): normal control (balanced diet), prednisolone control (10 mg/kg prednisolone daily), soybean oil (prednisolone 10 mg/kg + soybean oil 7% w/w), flaxseed oil (prednisolone 10 mg/kg + flaxseed oil 7% w/w), and fish oil (from cod liver; prednisolone 10 mg/kg + fish oil 7% w/w). Results: The study data exhibited a significant depletion in bone mineral density (BMD) and femur mass in the prednisolone control compared to the normal control, accompanied with a marked decrease in the levels of plasma calcium and 1,25-$(OH)_2$-vitamin $D_3$, and elevated levels of C-terminal telopeptide (CTX), tumor necrosis factor-alpha (TNF-${\alpha}$) and malondialdehyde (MDA). Supplementation with fish oil, soybean oil or flaxseed oil helped to improve plasma calcium levels, and suppress oxidative stress and inflammatory markers. Additionally, bone resorption was suppressed as reflected by the decreased CTX levels. However, fish oil was more effective than the other two oils with a significant improvement in BMD and normal histological results compared to the normal control. Conclusion: This study demonstrated that supplementation with dietary oils containing omega-3 PUFAs such as fish oil, soybean oil or flaxseed oil can play a role in the prevention of bone loss and in the regulation of bone metabolism, especially fish oil which demonstrated a greater level of protection against GC-induced osteoporosis.

Comparative and Interactive Biochemical Effects of Sub-Lethal Concentrations of Cadmium and Lead on Some Tissues of the African Catfish (Clarias gariepinus)

  • Elarabany, Naglaa;Bahnasawy, Mohammed
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.249-255
    • /
    • 2019
  • Cadmium is a strong toxic heavy metal which presents in paints and liquid wastes and causes oxidative stress in fish. On the other hand, lead is widely used for different purposes, e.g. lead pipes, it targets vital organs such as liver and kidney causing biochemical alterations. The present study evaluates the effects of 60 days exposure to Cd and Pb either single or combined together in African catfish. Sixty-four fishes were divided into 3 groups and exposed to $CdCl_2$ (7.02 mg/L) or $PbCl_2$ (69.3 mg/L) or a combination of them along with control group. Activities of acid phosphatase (ACP), lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) were estimated. Moreover, gill, liver and kidney were assayed for activities of superoxide dismutase (SOD), catalase (CAT) and levels of glutathione (GSH) and malondialdehyde (MDA). Individual exposure showed that both Cd and Pb significantly decreased LDH activity and SOD activity in the kidney. Pb significantly increased G-6-PDH activity and decreased GSH level in the gill. CAT activity in liver and kidney elevated significantly on Cd exposure while lead caused a significant depletion in the liver and significant elevation in the kidney. Both Cd and Pb significantly increased MDA levels in liver and kidney while Pb increased its level in gills. The combined exposure resulted in normalization of LDH, G-6-PDH activity, and CAT activity in liver and kidney as well as GSH level in both tissues and MDA in gill and kidney. The combination increased SOD activity and MDA level in liver and decreased SOD activity in kidney and GSH level in gills. In conclusion, the antioxidant system of African catfish was adversely affected by prolonged exposure to Cd and Pb. The combined exposure caused less damage than individual exposure and returned most parameters to those of controls.

Development of transgenic potato with improved anthocyanin contents using sweet potato IbMYB1 gene (고구마의 IbMYB1 유전자를 이용한 안토시아닌 고함유 형질전환 감자의 개발)

  • Kim, Yun-Hee;Han, Eun-Hee;Kwak, Sang-Soo;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.364-368
    • /
    • 2018
  • The R2R3-type protein IbMYB1 transcription factor is a key regulator for anthocyanin biosynthesis in the storage roots of sweet potatoes. It was previously demonstrated that the IbMYB1 expression stimulates anthocyanin pigmentation in tobacco leaves, arabidopsis and storage roots of sweet potatoes. In this study, we generated the transgenic potato plants that express the IbMYB1 genes, which accumulated high levels of anthocyanins under the control of either the tuber-specific patatin (PAT) promoter or oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The PAT-MYB1 transgenic lines exhibited higher anthocyanin levels in the tuber than the empty vector control (EV) or SWPA2-MYB1 plants. When combined, our results indicated that overexpression of the IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced tissue specific anthocyanin production.