• 제목/요약/키워드: Oxidative stress

검색결과 3,459건 처리시간 0.049초

1-Methoxylespeflorin G11 Protects HT22 Cells from Glutamate-Induced Cell Death through Inhibition of ROS Production and Apoptosis

  • Lee, Phil Jun;Pham, Chau Ha;Thuy, Nguyen Thi Thanh;Park, Hye-Jin;Lee, Sung Hoon;Yoo, Hee Min;Cho, Namki
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.217-225
    • /
    • 2021
  • This study aimed to investigate the neuroprotective effects of 1-methoxylespeflorin G11 (MLG), a pterocarpan, against glutamate-induced neurotoxicity in neuronal HT22 hippocampal cells. The protective effects of MLG were evaluated using MTT assay and microscopic analysis. The extent of apoptosis was studied using flow cytometric analysis performed on the damaged cells probed with annexin V/propidium iodide. Moreover, mitochondrial reactive oxygen species (ROS) were assessed using flow cytometry through MitoSOXTM Red staining. To determine mitochondrial membrane potential, staining with tetramethylrhodamine and JC-1 was performed followed by flow cytometry. The results demonstrated that MLG attenuates glutamate-induced apoptosis in HT22 cells by inhibiting intracellular ROS generation and mitochondrial dysfunction. Additionally, MLG prevented glutamate-induced apoptotic pathway in HT22 cells through upregulation of Bcl-2 and downregulation of cleaved PARP-1, AIF, and phosphorylated MAPK cascades. In addition, MLG treatment induced HO-1 expression in HT22 cells. These results suggested that MLG exhibits neuroprotective effects against glutamate-induced neurotoxicity in neuronal HT22 cells by inhibiting oxidative stress and apoptosis.

HT22 신경세포에서 금은화 추출물에 의한 글루타메이트 유도 산화적 스트레스 및 세포사멸 억제 효과 (Inhibitory Effect of Lonicera japonica Thunb. Flower Buds against Glutamate-Induced Cytotoxicity in HT22 Hippocampal Neurons)

  • 전창환;송춘호
    • Korean Journal of Acupuncture
    • /
    • 제38권1호
    • /
    • pp.32-42
    • /
    • 2021
  • Objectives : In this study, we investigated the neuroprotective effects of ethanol extract of Lonicera japonica flower buds (EELJ) on glutamate-induced neurotoxicity in mouse hippocampus-derived neuronal HT22 cells. Methods : After analyzing the cytoprotective effect of EELJ on glutamate in HT22 cells, the inhibitory effect of apoptosis was studied using flow cytometry. In order to analyze the antioxidant efficacy of EELJ, the levels of reactive oxygen species (ROS) and glutathione (GSH) were investigated, and the effects on the activities of superoxide dismutase (SOD) and catalase (CAT) were also analyzed. Furthermore, the effect of EELJ on the expression of apoptosis regulators such as Bax and Bcl-2 in glutamate-treated HT22 cells was investigated. Results : According the current results, pretreatment with EELJ significantly reduced glutamate-induced loss of cell viability and release of lactate dehydrogenase. EELJ also markedly attenuated glutamate-induced generation of intracellular ROS, which was associated with increased levels of GSH, and activity of SOD and CAT in glutamate-stimulated HT22 cells. In addition, EELJ was strikingly inhibited glutamate-induced apoptosis in HT22 cells. Furthermore, the expression of pro-apoptotic Bax was increased and the expression of anti-apoptotic Bcl-2 was decreased in glutamate-treated HT22 cells, while in the presence of EELJ, their expressions were maintained at the control levels. Conclusions : These findings indicate that EELJ protects glutamate-induced cytotoxicity in HT22 hippocampal neurons through antioxidant activity. Therefore, although identification of biologically active substances of EELJ and re-evaluation through animal experiments is necessary, this natural substance is a promising candidate for further research in preventing and treating oxidative stress-mediated neurodegenerative diseases.

Green tea polyphenol (-)-epigallocatechin-3-gallate prevents ultraviolet-induced apoptosis in PC12 cells

  • Woo, Su-Mi;Kim, Yoon-Jung;Cai, Bangrong;Park, Sam-Young;Kim, Young;Kim, Ok Joon;Kang, In-Chol;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.179-189
    • /
    • 2020
  • Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) is a potent antioxidant with protective effects against neurotoxicity. However, it is currently unclear whether EGCG protects neuronal cells against radiation-induced damage. Therefore, the objective of this study was to investigate the effects of EGCG on ultraviolet (UV)-induced oxidative stress and apoptosis in PC12 cells. The effects of UV irradiation included apoptotic cell death, which was associated with DNA fragmentation, reactive oxygen species (ROS) production, enhanced caspase-3 and caspase-9 activity, and poly (ADP-ribose) polymerase cleavage. UV irradiation also increased the Bax/Bcl-2 ratio and mitochondrial pathway-associated cytochrome c expression. However, pretreatment with EGCG before UV exposure markedly decreased UV-induced DNA fragmentation and ROS production. Furthermore, the UV irradiation-induced increase in Bax/Bcl-2 ratio, cytochrome c upregulation, and caspase-3 and caspase-9 activation were each ameliorated by EGCG pretreatment. Additionally, EGCG suppressed UV-induced phosphorylation of p38 and rescued UV-downregulated phosphorylation of ERK. Taken together, these results suggest that EGCG prevents UV irradiation-induced apoptosis in PC12 cells by scavenging ROS and inhibiting the mitochondrial pathways known to play a crucial role in apoptosis. In addition, EGCG inhibits UV-induced apoptosis via JNK inactivation and ERK activation in PC12 cells. Thus, EGCG represents a potential neuroprotective agent that could be applied to prevent neuronal cell death induced by UV irradiation.

Effects of the fermented Zizyphus jujuba in the amyloid β25-35-induced Alzheimer's disease mouse model

  • Kim, Min Jeong;Jung, Ji Eun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Nutrition Research and Practice
    • /
    • 제15권2호
    • /
    • pp.173-186
    • /
    • 2021
  • BACKGROUD/OBJECTIVES: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. Due to the increased incidence of dementia, there is a corresponding increase concerning the importance of AD. In this study, we investigated the protective effects conferred by Zizyphus jujuba (Zj) and Zizyphus jujuba fermented by yeast (Zj-Y), on cognitive impairment in an AD mouse model. MATERIALS/METHODS: AD was induced by injecting amyloid beta25-35 (Aβ25-35) in ICR mice, and subsequently 200 mg/kg Zj or Zj-Y was administered daily for 14 days. The cognitive ability of AD mice was observed through behavioral experiments in T-maze, novel object recognition, and Morris water maze tests. We subsequently measured the levels of malondialdehyde (MDA), nitric oxide (NO), aspartate aminotransferase, and alanine aminotransferase in either tissues or serum. RESULTS: In behavioral tests, deterioration was revealed in the short- and long-term learning and memory functions in the Aβ25-35-injected control group compared to the normal group, indicating that Aβ25-35 injection impairs cognitive functions. However, administration of Zj and Zj-Y improved cognitive function in mice, as compared to the Aβ25-35-injected control mice. In addition, the Aβ25-35 induced elevations of MDA and NO in the brain, kidney, and liver were suppressed after exposure to Zj and Zj-Y. Especially, Zj-Y showed stronger scavenging effect against MDA and NO, as compared to Zj. CONCLUSIONS: Results of the present study indicate that Zj-Y exerts a protective effect on cognitive impairment and memory dysfunction, which is exerted by attenuating the oxidative stress induced by Aβ25-35.

The Small GTPase CsRAC1 Is Important for Fungal Development and Pepper Anthracnose in Colletotrichum scovillei

  • Lee, Noh-Hyun;Fu, Teng;Shin, Jong-Hwan;Song, Yong-Won;Jang, Dong-Cheol;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.607-618
    • /
    • 2021
  • The pepper anthracnose fungus, Colletotrichum scovillei, causes severe losses of pepper fruit production in the tropical and temperate zones. RAC1 is a highly conserved small GTP-binding protein in the Rho GT-Pase family. This protein has been demonstrated to play a role in fungal development, and pathogenicity in several plant pathogenic fungi. However, the functional roles of RAC1 are not characterized in C. scovillei causing anthracnose on pepper fruits. Here, we generated a deletion mutant (𝜟Csrac1) via homologous recombination to investigate the functional roles of CsRAC1. The 𝜟Csrac1 showed pleiotropic defects in fungal growth and developments, including vegetative growth, conidiogenesis, conidial germination and appressorium formation, compared to wild-type. Although 𝜟Csrac1 was able to develop appressoria, it failed to differentiate appressorium pegs. However, 𝜟Csrac1 still caused anthracnose disease with significantly reduced rate on wounded pepper fruits. Further analyses revealed that 𝜟Csrac1 was defective in tolerance to oxidative stress and suppression of host-defense genes. Taken together, our results suggest that CsRAC1 plays essential roles in fungal development and pathogenicity in C. scovilleipepper fruit pathosystem.

The involvement of Parkin-dependent mitophagy in the anti-cancer activity of Ginsenoside

  • Sun, Xin;Hong, Yeting;Shu, Yuhan;Wu, Caixia;Ye, Guiqin;Chen, Hanxiao;Zhou, Hongying;Gao, Ruilan;Zhang, Jianbin
    • Journal of Ginseng Research
    • /
    • 제46권2호
    • /
    • pp.266-274
    • /
    • 2022
  • Colon cancer, the third most frequent occurred cancer, has high mortality and extremely poor prognosis. Ginsenoside, the active components of traditional Chinese herbal medicine Panax ginseng, exerts antitumor effect in various cancers, including colon cancer. However, the detailed molecular mechanism of Ginsenoside in the tumor suppression have not been fully elucidated. Here, we chose the representative ginsenoside Rg3 and reported for the first time that Rg3 induces mitophagy in human colon cancer cells, which is responsible for its anticancer effect. Rg3 treatment leads to mitochondria damage and the formation of mitophagosome; when autophagy is inhibited, the clearance of damaged mitochondria can be reversed. Next, our results showed that Rg3 treatment activates the PINK1-Parkin signaling pathway and recruits Parkin and ubiquitin proteins to mitochondria to induce mitophagy. GO analysis of Parkin targets showed that Parkin interacts with a large number of mitochondrial proteins and regulates the molecular function of mitochondria. The cellular energy metabolism enzyme GAPDH is validated as a novel substrate of Parkin, which is ubiquitinated by Parkin. Moreover, GAPDH participates in the Rg3-induced mitophagy and regulates the translocation of Parkin to mitochondria. Functionally, Rg3 exerts the inhibitory effect through regulating the nonglycolytic activity of GAPDH, which could be associated with the cellular oxidative stress. Thus, our results revealed GAPDH ubiquitination by Parkin as a crucial mechanism for mitophagy induction that contributes to the tumor-suppressive function of ginsenoside, which could be a novel treatment strategy for colon cancer.

Effects of 630-nm Organic Light-emitting Diodes on Antioxidant Regulation and Aging-related Gene Expression Compared to Light-emitting Diodes of the Same Wavelength

  • Mo, SangJoon;Kim, Eun Young;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.227-235
    • /
    • 2022
  • To investigate the aging-related physiological functions of organic light-emitting diodes (OLEDs), we examined mRNA expression changes in aging-related genes due to oxidative stress inhibition by 630-nm red light OLEDs. As a result of irradiating 630-nm OLED with an intensity of 5 mW/cm2 for 15 min, the viability of dermal fibroblasts significantly increased by 1.3-fold. In addition, reactive oxygen species generated by H2O2 were significantly reduced about 4.9-fold by irradiation with 630-nm OLED. Quantitative reverse-transcription polymerase chain reaction results showed that 630-nm OLEDs altered aging-related gene mRNA expression levels through antioxidant activity. The mRNA expression levels of matrix metalloproteinase1 (MMP1) and MMP9 decreased significantly, by about 2.2- and 2.5-fold, compared to the control group, whereas those of collagen, type I, and alpha 1 increased significantly, by 4.9-fold. The mRNA expression levels of cancer suppression genes p16 and p53 in dermal fibroblasts were also significantly reduced by 630-nm OLED irradiation, by about 1.4- and three-fold, respectively, compared to the control. Overall, it was confirmed that 630-nm OLED irradiation lowered the level of ROS formation induced by H2O2 in dermal fibroblasts, and that this antioxidant effect could regulate the mRNA expression levels of aging- and tumor suppression-related genes. This study shows a link between 630-nm OLED irradiation and anti-aging physiological functions such as antioxidant function, and suggests the potential of OLEDs as a useful light source for skin care.

Effects of Farinelli Breating Exercise on Respiratory Function and Symptoms in Patients with Chronic Obstructive Pulmonary Disease

  • Ittinirundorn, Supawit;Wongsaita, Naiyana;Somboonviboon, Dujrath;Tongtako, Wannaporn
    • Tuberculosis and Respiratory Diseases
    • /
    • 제85권2호
    • /
    • pp.137-146
    • /
    • 2022
  • Background: Farinelli breathing (FB) exercise is a typical breathing exercise used by singers. This study aimed to compare effects of FB exercise and diaphragmatic breathing (DB) exercise on respiratory function and symptoms in patients with chronic obstructive pulmonary disease (COPD). Methods: Sixteen patients aged 51-80 years with mild or moderate COPD were recruited for this study. They were divided into two groups: DB group (n=8) and FB group (n=8). Both groups received complete breathing exercise training five times per week for 8 weeks. Their respiratory functions, COPD symptoms, cytokine levels, and oxidative stress variables were analyzed during pre- and post-tests. Dependent variables were compared between pre- and post-tests using paired t-tests. An independent t-test was used to compare variables between the groups. Differences were considered significant at p<0.05. Results: The maximal expiratory pressure (MEP), maximum oxygen consumption (VO2max), and COPD Assessment Test (CAT) scores changed significantly in the DB group after the 8-week intervention compared to those at pre-test, whereas force vital capacity, forced expiratory volume in the first second, maximum voluntary ventilation, maximal inspiratory pressure (MIP), MEP, VO2max, CAT score, tumor necrosis factor-α, and malondialdehyde level changed significantly in the FB group at post-test compared to those at pre-test. Moreover, both MIP and MEP in the FB group were significantly higher than those in the DB group. Conclusion: FB exercise improved respiratory functions and COPD symptoms of patients with COPD. It might be an alternative breathing exercise in pulmonary rehabilitation programs for patients with COPD.

Syringaresinol derived from Panax ginseng berry attenuates oxidative stress-induced skin aging via autophagy

  • Choi, Wooram;Kim, Hyun Soo;Park, Sang Hee;Kim, Donghyun;Hong, Yong Deog;Kim, Ji Hye;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.536-542
    • /
    • 2022
  • Background: In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix (ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases (MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities, including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and autophagy regulation have not been elucidated. Methods: The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in the presence of H2O2, and the keratinocyte cells were treated with SYR (0-200 ㎍/mL). mRNA and protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively. Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and confocal microscopy. Results: SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H2O2-treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and ABTS radical scavenging activities with an EC50 value of 10.77 and 10.35 ㎍/mL, respectively. SYR elevated total levels of endogenous and exogenous LC3B in H2O2-stimulated HaCaT cells. 3-Methyladenine (3-MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression. Conclusion: SYR showed antioxidant activity and up-regulated autophagy activity in H2O2-stimulated HaCaT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.

Ginsenoside compound K reduces the progression of Huntington's disease via the inhibition of oxidative stress and overactivation of the ATM/AMPK pathway

  • Hua, Kuo-Feng;Chao, A-Ching;Lin, Ting-Yu;Chen, Wan-Tze;Lee, Yu-Chieh;Hsu, Wan-Han;Lee, Sheau-Long;Wang, Hsin-Min;Yang, Ding-I.;Ju, Tz-Chuen
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.572-584
    • /
    • 2022
  • Background: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of trinucleotide CAG repeat in the Huntingtin (Htt) gene. The major pathogenic pathways underlying HD involve the impairment of cellular energy homeostasis and DNA damage in the brain. The protein kinase ataxia-telangiectasia mutated (ATM) is an important regulator of the DNA damage response. ATM is involved in the phosphorylation of AMP-activated protein kinase (AMPK), suggesting that AMPK plays a critical role in response to DNA damage. Herein, we demonstrated that expression of polyQ-expanded mutant Htt (mHtt) enhanced the phosphorylation of ATM. Ginsenoside is the main and most effective component of Panax ginseng. However, the protective effect of a ginsenoside (compound K, CK) in HD remains unclear and warrants further investigation. Methods: This study used the R6/2 transgenic mouse model of HD and performed behavioral tests, survival rate, histological analyses, and immunoblot assays. Results: The systematic administration of CK into R6/2 mice suppressed the activation of ATM/AMPK and reduced neuronal toxicity and mHTT aggregation. Most importantly, CK increased neuronal density and lifespan and improved motor dysfunction in R6/2 mice. Conversely, CK enhanced the expression of Bcl2 protected striatal cells from the toxicity induced by the overactivation of mHtt and AMPK. Conclusions: Thus, the oral administration of CK reduced the disease progression and markedly enhanced lifespan in the transgenic mouse model (R6/2) of HD.