• Title/Summary/Keyword: Oxidative decomposition

Search Result 64, Processing Time 0.025 seconds

Catalytic Oxidation of Trichloroethylene over Pd-Loaded Sulfated Zirconia

  • Park, Jung-Nam;Lee, Chul-Wee;Chang, Jong-San;Park, Sang-Eon;Shin, Chae-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1355-1360
    • /
    • 2004
  • The oxidative decomposition of trichloroethylene (TCE) was investigated using palladium catalysts supported on pure and sulfated zirconia. The reactions were performed under dry and wet conditions in the temperature between 200 and $550^{\circ}C$ keeping GHSV of 14,000 $h^{-1}.$ The products such as $C_2Cl_4,\;C_2HCl_5,\;CO\;and\;CO_2$ were observed in the reaction. The addition of water in the feed affected the distribution of reaction product with dramatically improved catalytic activity. The spectroscopic investigations gave an evidence that the strong acid sites play an important role on controlling the catalytic activity. Among the catalysts investigated, the Pd-loaded sulfated zirconia catalyst with 1 wt% Pd was found to exhibit the highest catalytic activity in the presence of water vapor having the stability for 30 h of the reaction at $500^{\circ}C$. The successful performance of the catalyst might be attributed to promotional effect of Pd active sites and strong acid sites induced from surface sulfate species on zirconia.

Effect of Multiple Freeze-Thaw Cycles on Lipid Degradation and Lipid Oxidation of Grass Carp Surimi Containing Different Amounts of Pork Back Fat

  • Shang, Xiaolan;Du, Juan;Zhao, Yuhan;Tian, Jiajia;Jiang, Shuhui
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.923-935
    • /
    • 2021
  • Fresh grass carp was used to produce surimi samples that were supplemented with 50 g/kg, 100 g/kg, or 150 g/kg pork back fat. The lipid composition, lipase activity, lipid oxidation index, and lipoxygenase activity of samples subjected to repeated freezethaw process were determined to assess the effects of the added fat on lipolysis and lipid oxidation of grass carp surimi. Freeze-thaw treatment increased free fatty acid content, mainly due to the decomposition of phospholipids and some neutral lipids by lipase. With repeated freeze-thaw treatment, the levels of free fatty acids and phospholipids were correlated with the lipid oxidation indexes and lipoxygenase activity, indicating that lipid degradation can promote lipid oxidation. In the same freeze-thaw cycle, surimi products with high fat content are more vulnerable to oxidative damage, neutral lipids are the main source of free fatty acids in the early stage of freeze-thaw, and phospholipids are the main source of free fatty acids in the late stage.

A Study on the Hydrogen Degradation of HDPE by Hydrogen Pressure of 90 MPa (90 MPa의 수소 압력에 의한 HDPE의 수소 열화 연구)

  • MINA KIM;CHANG HOON LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.307-315
    • /
    • 2023
  • The physical and chemical changes exhibited by high density polyethylene (HDPE) after treatment with hydrogen at a pressure of 90 MPa followed by rapid release of the hydrogen were studied. X-ray diffraction, differential scanning calorimetry, thermo gravimetric analysis, and attenuated total reflectance (ATR)-fourier transform infrared (FTIR) were used for this purpose. As a result, it was found that the degree of crystallinity of HDPE decreased after hydrogen pressure treatment, while the average thickness of lamellae that constitute the crystals and the melting temperature of the crystalline region actually increased. The decomposition temperature also increased by about 3℃. In addition, it was found that the hydrogen bonding network between -OH groups in the HDPE sample was strengthened and partial chain scission occurred. These cut chains were found to be terminated by oxidative degradation such as cross-linking between chains, -C=O, -C-O, and -CHO, or by the formation of -CH3 at the chain ends, as confirmed by ATR-FTIR.

Analysis of Free Fatty Acid Formation and Oxidative Rancidity for Deep Flying Oil Produced by Traditional and Modified Fryers (전통식과 개량식 튀김기에 대한 튀김기름의 유리지방산 생성 및 산패도 측정 비교)

  • Choi, Il-Sook;Choi, Soo-Keun;Lee, Young-Soon
    • Culinary science and hospitality research
    • /
    • v.17 no.4
    • /
    • pp.316-325
    • /
    • 2011
  • The property of deep frying oil is one of die important factors in fried food quality. The purpose of this study is to identify die quality of deep frying oil in continuous usages for 4 days by two types of fryers: traditional and modified fryers. After frying polk cutlets, die flying oil was kept not only for several physical analyses such as color, viscosity, and water content but also for quality analyses of flying oil such as free fatty acid, double bond changes and oxidative rancidity formation. The fried oil by a traditional flyer was significantly increased in die physical values of color and viscosity than that by a modified fryer. In die acid value, the fried oil by a traditional fryer was significantly increased in free fatty acid than that by a modified fryer while die iodine value was significantly decreased in die fried oil by a traditional fryer when compared to control oil and fried oil by a modified fryer. In die peroxide value as an indicator of primary oxidation products, die fried oil by both fryers was significantly increased till die second day but decreased in die value after die third day because of unstable hydroperoxides' decomposition. In die p-anicidine value as an indicator of secondary oxidation products, die fried oil in a traditional fryer was significantly increased in die value than that in a modified fry.

  • PDF

Effects of Storage Conditions on Rancidity of Perilla and Sesame Seed Oils (저장조건(貯藏條件)이 들깨유(油) 및 참깨유(油)의 산패도(酸敗度)에 미치는 영향(影響))

  • Kim, Hye-Kyung;Lee, Yang-Cha;Lee, Ki-Yull
    • Journal of Nutrition and Health
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 1979
  • It is a general trend everywhere that the uses of vegetable oils are increasing due to the fact that they are effective in curing and preventing symptoms of high blood pressure and various heart failure conditions. At the same time the concept that oxidative rancidity is caused by the oxidation of unsaturated fatty acid moieties whose subsequent decomposition gives rise to various undesirable, sometimes toxic compounds is now well accepted. Linolenic acid (C, 18:3) is one of highly unsaturated and readily oxidizable fatty acid. The content of this essential polyunsaturated fatty acid in perilla seed oil (PSO) was found to be as high as 48% while only 1.5% in sesame seed oil (SSO). In this experiment the oxidative stability of PSO was compared with that of SSO. The experimental test group were as follows: A) Stored at different temperatures, namely $4^{\circ}C,\;30^{\circ}C,$ and $60^{\circ}C,$ B) Stored at room temperature $(20{\pm}5^{\circ}C)$ ; a. protected from sunlight and air, b. exposed to air without sunlight c. exposed to sunlight but protected front air, d. completely exposed to both air and sunlight. The following results were obtained; 1) It was found to be most stable against oxidation to store both PSO and SSO under the low temperature $(4^{\circ}C)$ condition. According to P.V. measurements it was found to be safe to keep both oils up to $30^{\circ}C$ for at least 8 weeks. When exposed to air, sunlight and high temperature $(60^{\circ}C)$, P.V. of PSO reached there peak values, which were much higher than those of SSO. This explains much of its instability as compared to SSO against oxidation. 2) The effect of high temperature $(60^{\circ}C)$ on A.V. was found to be more striking than those of all the other storage conditions. The condition of refrigeration was most effective in keeping A.V. low for both oils as was the case in P.V. 3) For both oils, I.V. decreased throughout the experimental period (8 weeks). The range of decrement was larger for PSO than SSO. 4) There was no significant change in the compositions of fatty acids of SSO caused by various experimental storage conditions. But for PSO the compositions of stearic, oleic and linoleic acid were decreased, whereas linolenic acid was increased proportionally.

  • PDF

Study on the Changes of Tocopherols and Lignans and the Oxidative Properties of Roasted Sesame Oil during Manufacturing and Storage (볶은 참기름의 제조 및 저장 중 토코페롤과 리그난 함량 변화 및 산화 특성 연구)

  • Lee, Jin-Young;Kim, Moon-Jung;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • This study investigated the antioxidant content and oxidative properties of roasted sesame oil during manufacturing and storage at $25^{\circ}C$ in the dark for 18 months. The manufacturing steps included pressing of the roasted sesame seeds, and then three filtering steps. Filtering decreased the oil viscosity, but increased free fatty acid content. The peroxide value (POV) was not affected by filtering. Sesamin, sesamolin, and tocopherol levels were significantly higher in the $3^{rd}$ filtered oil as compared to the other oils; however, sesamol content was reduced. The roasted sesame oil oxidized slowly during storage at $25^{\circ}C$ in the dark, and there was no POV change up to 9 months of storage. The levels of sesamol, sesamin, sesamolin, and tocopherols in the oil decreased with storage time, and the tocopherol decomposition rate (-3.04%/month) was higher than that of total lignan compounds (-1.06%/month). Therefore, these results suggest that tocopherols have priority over lignan compounds in performing as antioxidants in roasted sesame oil during storage.

Physicochemical Analysis in the Reuse of Deep-Frying Oil: Comparison of Traditional Fryer and Modified Fryer (튀김유의 재사용에 의한 품질 특성: 전통 튀김기와 수유식 개량 튀김기의 비교)

  • Choi, Il-Sook;Lee, Young-Soon;Choi, Soo-Keun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.470-476
    • /
    • 2013
  • The property of deep frying oil is one of the important factors in fried food quality. The purpose of this study is to identify the quality of deep frying oil in continuous usages for 4 days by two types of fryers: traditional deep-fat fryer and modified oil-water fryer. After frying pork cutlets, the frying oil was kept not only for several physical analyses such as color, viscosity, and water content but also for the quality analyses of frying oil, such as free fatty acid, double bond changes and oxidative rancidity formation. The oil fried in a traditional deep-fat fryer was significantly increased in terms of physical values including moisture content, viscosity, and color, compared to those of the modified fryer, continuously for 4 days. The oil fried by a traditional deep-fat fryer exhibited a significant increase in its free fatty acid content compared to that fried by a modified oil-water fryer, while the iodine value was significantly decreased in the oil fried by a traditional deep-fat fryer when compared to control oil and oil fried by the modified oil-water fryer. In the peroxide value as an indicator of primary oxidation products, the oil fried by both fryers was significantly increased till the second day but decreased in value after the third day because of unstable hydroperoxide decomposition. The p-anicidine value is used as an indicator of secondary oxidation products, the oil fried in a traditional deep-fat fryer was significantly increased in value compared to that of a modified oil-water fryer.

Crystallinity of CrOx/TiO2 Catalysts and Their Activity in TCE Oxidation (CrOx/TiO2 촉매의 결정성과 TCE 산화반응 활성)

  • Kim, Moon-Hyeon;Lee, Hyo-Sang
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.829-837
    • /
    • 2014
  • Titania-supported chromium oxides with different loadings have been embarked in catalytic oxidation of trichloroethylene (TCE) to inquire association of the formation of crystalline $Cr_2O_3$ with catalytic performances. A better activity in the oxidative TCE decomposition at chosen temperatures was represented when chromium oxides ($CrO_x$) had been dispersed on pure anatase-type $TiO_2$ (DT51D) rather than on phase-mixed and sulfur-contained ones such as P25 and DT51. The extent of TCE oxidation at temperatures below $350^{\circ}C$ was a strong function of $CrO_x$ content in $CrO_x$/DT51D $TiO_2$, and a noticeable point was that the catalyst has two optimal $CrO_x$ loadings in which the lowest $T_{50}$ and $T_{90}$ values were measured for the TCE oxidation. This behavior in the activity with respect to $CrO_x$ amounts could be associated with the formation of crystalline $Cr_2O_3$ on the support surface, that is less active for the oxidation reaction, and an easier mobility of the surface oxygen existing in noncrystalline $CrO_x$ species with higher oxidation states, such as $Cr_2O_8$ and $CrO_3$.

Study on the Thermal Decomposition Behavior of[ABS/PC/Triphenyl Phosphate/Transition Metal Chloride] Compounds ([ABS/PC/Triphenyl Phosphate/Transition Metal Chloride] 컴파운드의 열분해 거동 연구)

  • Jang Junwon;Kim Jin-Hwan;Bae Jin-Young
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.338-343
    • /
    • 2005
  • The thermal degradation of ABS/PC/triphenyl phosphate compounds in the presence of transition metal chloride catalysts has been studied by thermogravimetric analysis (TGA). The reaction of transition metal chloride catalysts (cobalt chloride, ferric chloride, nickel chloride and zinc chloride) and ABS/PC/triphenyl phosphate compounds has been found to occur during the thermal degradation of the compounds. In a nitrogen atmosphere, char formation is observed, and $3\~13\%$of the reaction product is non-volatile at $600^{circ}$. The resulting enhancement of char formation in a nitrogen atmosphere has been explained as a catalytic crosslinking effect of transition metal chloride catalysts. On the other hand, transition metal chloride catalyzed char formation of ABS/PC/triphenyl phosphate compounds in air was unsuccessful due to the oxidative degradation of the char at a higher temperature.

Sustained Release of Anthocyanin from Porous Poly(lactic-co-glycolide) Microsparticles Developed for the Treatment of Chronic Obstructive Pulmonary Disease

  • Yoo, Na-Young;Baik, Hye-Jung;Lee, Bo-Reum;Youn, Yu-Seok;Oh, Kyung-Taek;Lee, Eun-Seong
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.231-236
    • /
    • 2010
  • This study was to fabricate the porous poly(lactide-co-glycolide) (PLGA) microparticles with anthocyanin (as a model antioxidant) for pulmonary drug delivery. The highly porous PLGA microparticles were prepared by the waterin-oil-in-water ($W_1/O/W_2$) multi-emulsion method, followed by the decomposition of ammonium bicarbonate (AB) in $W_1$ phase to the base of ammonia, carbon dioxide and water vapor at $50^{\circ}C$, making a porous structure in PLGA microparticles. Herein, hyaluronate (HA), a viscous polysaccharide, was incorporated in the porous microparticles for sustained anthocyanin release. In in vitro release studies, the anthocyanin release from the porous microparticles with HA continued up to 24 hours, while the porous microparticles without HA released 80 wt.% of encapsulated anthocyanin within 2 hours. In addition, these microparticle are expected to be effectively deposited at a lung epithelium due to its high porosity (low density) and avoid alveolar macrophage's uptake in the lung due to its large particle size. We believe that this system has a great pharmaceutical potential as a long acting antioxidant for relieving the oxidative stress in chronic obstructive pulmonary disease (COPD).