• Title/Summary/Keyword: Oxidative Stress Markers

Search Result 173, Processing Time 0.027 seconds

Tai Chi Exercise on MDA, SOD and Physical Fitness in Breast Cancer Patients (규칙적인 태극권의 참여가 유방암 수술환자의 산화-항산화계에 미치는 영향)

  • Hwang, In-Soo;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.543-548
    • /
    • 2009
  • Treatment for breast cancer produces side effects that diminish functional capacity and quality of life (QOL) among survivors. Tai Chi is a moderate form of exercise that may improve functional capacity, physical activity and oxidative stress. The purpose of this study was to evaluate the effects of regular Tai Chi exercise on malondialdehyde (MDA), SOD and physical fitness (muscle strength, flexibility, flexion, extension, adduction, and abduction). Forty obese women were recruited from a public health center and divided into control (CON: n=20) and trained (EXP: n=20) groups. The Tai Chi exercise group participated in a 12-week (4 times/week) training program. Data were analyzed with T-test. MDA, SOD and physical fitness (muscle strength, flexibility, flexion, extension, adduction, and abduction) were evaluated before and after the Tai Chi program in both groups. There were significant improvements in shoulder flexibility, flexion, extension, abduction, and adduction. However, there was no improvement in muscle strength. There were also significant improvements in MDA and SOD. Based on these results, Tai Chi exercise has been shown to stimulate endogenous antioxidant enzymes and reduce oxidative damage markers. and also be effective in improving physical fitness and QOL. Further study is needed in this area.

Recent Research Trends in Induction of Cellular Senescence by Microplastics (미세플라스틱에 의한 세포 노화 유도의 최근 연구 동향)

  • Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.34 no.8
    • /
    • pp.594-607
    • /
    • 2024
  • Plastic products have long been widely used in both industrial and household applications. However, tiny plastic particles derived from plastic products, such as microplastics (MPs) and nanoplastics (NPs), can infiltrate the human body through inhalation, ingestion, or skin contact. Once inside cells via endocytosis, MPs and NPs (MNPs) can trigger autophagy, but lysosomal dysfunction can block autophagic flux. Accumulating in the cytoplasm, these particles induce cellular stress, including oxidative stress from free radicals, mitochondrial dysfunction, and increased inflammatory response. Meanwhile, cellular senescence is a hallmark of aging and is defined as the stable termination of the cell cycle in response to cell damage and stress. In particular, the accumulation of oxidative stress, a key factor in inducing cellular senescence, induces the expression of major senescence markers. Senescent cells increase the secretion of senescence-associated secretory phenotype, including inflammatory cytokines and chemokines. Despite growing interest in how MNPs induce cellular senescence, there remains a gap regarding their onset and therapeutic targets. Therefore, this review focuses on identifying recent research trends on how MNPs induce cellular aging in key human cell types and proposes future research directions to overcome these challenges.

Effects of Chrysanthemum indicum L. Extract on the Function of Osteoblastic MC3T3-E1 Cells under Oxidative Stress Induced by Hydrogen PeroxideJee (감국(Chrysanthemum indicum L.) 추출물이 H2O2로 유도한 산화적 스트레스에서 MC3T3-E1 조골세포 기능에 미치는 영향)

  • Yun, Jee-Hye;Hwang, Eun-Sun;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.82-88
    • /
    • 2012
  • Chrysanthemum indicum L. (Asteraceae) is a traditional herbal medicine that has been used for the treatment of inflammation, hypertension, and respiratory diseases due to its strong antagonistic activity against inflammatory cytokines. The effects of Chrysanthemum indicum L. Extract (CIE) for increasing cell growth, alkaline phosphatase (ALP) activity, and collagen content were totally inhibited, suggesting that the effect of CIE might be partly involved with estrogen activity. Furthermore, the protective effects of CIE on the response of osteoblasts to oxidative stress were evaluated. Osteoblastic MC3T3-E1 cells were incubated with hydrogen peroxide and/or CIE, and markers of osteoblast function and oxidative damage were examined. CIE significantly increased cell survival, ALP activity, and calcium deposition, and decreased the production of Reactive Oxygen Species (ROS) and Tumor Necrosis Factor-${\alpha}$ (TNF-${\alpha}$) in osteoblasts. Taken together, these results indicate that the enhancement of osteoblast function by CIE may prevent osteoporosis and inflammatory bone diseases.

Honey and levodopa comparably preserved substantia nigra pars compacta neurons through the modulation of nuclear factor erythroid 2-related factor 2 signaling pathway in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease model

  • Fatimo Ajoke Sulaimon;Ruqayyah Yetunde Ibiyeye;Aminu Imam;Aboyeji Lukuman Oyewole;Abubakar Lekan Imam;Monsur Shehu;Sikiru Abayomi Biliaminu;Risikat Eniola Kadir;Gabriel Olaiya Omotoso;Moyosore Salihu Ajao
    • Anatomy and Cell Biology
    • /
    • v.57 no.3
    • /
    • pp.431-445
    • /
    • 2024
  • Parkinson's disease (PD) affects about 8.5 million individuals worldwide. Oxidative and inflammatory cascades are implicated in the neurological sequels, that are mostly unresolved in PD treatments. However, proper nutrition offers one of the most effective and least costly ways to decrease the burden of many diseases and their associated risk factors. Moreover, prevention may be the best response to the progressive nature of PD, thus, the therapeutic novelty of honey and levodopa may be prospective. This study aimed to investigate the neuroprotective role of honey and levodopa against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced oxidative stress. Fifty-four adult male Swiss mice were divided into control and PD model groups of 27 mice. Each third of the control mice either received phosphate buffered saline, honey, or levodopa for 21 days. However, each third of the PD models was either pretreated with honey and levodopa or not pretreated. Behavioral studies and euthanasia were conducted 2 and 8 days after MPTP administration respectively. The result showed that there were significantly (P<0.05) higher motor activities in the PD models pretreated with the honey as well as levodopa. furthermore, the pretreatments protected the midbrain against the chromatolysis and astrogliosis induced by MPTP. The expression of antioxidant markers (glutathione [GSH] and nuclear factor erythroid 2-related factor 2 [Nrf2]) was also significantly upregulated in the pretreated PD models. It is thus concluded that honey and levodopa comparably protected the substantia nigra pars compacta neurons against oxidative stress by modulating the Nrf2 signaling molecule thereby increasing GSH level to prevent MPTP-induced oxidative stress.

Oxymatrine Causes Hepatotoxicity by Promoting the Phosphorylation of JNK and Induction of Endoplasmic Reticulum Stress Mediated by ROS in LO2 Cells

  • Gu, Li-li;Shen, Zhe-lun;Li, Yang-Lei;Bao, Yi-Qi;Lu, Hong
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.401-412
    • /
    • 2018
  • Oxymatrine (OMT) often used in treatment for chronic hepatitis B virus infection in clinic. However, OMT-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of OMT-induced hepatotoxicity in human normal liver cells (L02). Exposed cells to OMT, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, OMT altered apoptotic related proteins levels, including Bcl-2, Bax and pro-caspase-8/-9/-3. In addition, OMT enhanced the protein levels of endoplasmic reticulum (ER) stress makers (GRP78/Bip, CHOP, and cleaved-Caspase-4) and phosphorylation of c-Jun N-terminal kinase (p-JNK), as well as the mRNA levels of GRP78/Bip, CHOP, caspase-4, and ER stress sensors (IREI, ATF6, and PERK). Pre-treatment with Z-VAD-fmk, JNK inhibitor SP600125 and N-acetyl-l-cysteine (NAC), a ROS scavenger, partly improved the survival rates and restored OMT-induced cellular damage, and reduced caspase-3 cleavage. SP600125 or NAC reduced OMT-induced p-JNK and NAC significantly lowered caspase-4. Furthermore, 4-PBA, the ER stress inhibitor, weakened inhibitory effect of OMT on cells, on the contrary, TM worsen. 4-PBA also reduced the levels of p-JNK and cleaved-caspase-3 proteins. Therefore, OMT-induced injury in L02 cells was related to ROS mediated p-JNK and ER stress induction. Antioxidant, by inhibition of p-JNK or ER stress, may be a feasible method to alleviate OMT-induced liver injury.

Kidney protective potential of lactoferrin: pharmacological insights and therapeutic advances

  • Zahan, Md. Sarwar;Ahmed, Kazi Ahsan;Moni, Akhi;Sinopoli, Alessandra;Ha, Hunjoo;Uddin, Md Jamal
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • Kidney disease is becoming a global public health issue. Acute kidney injury (AKI) and chronic kidney disease (CKD) have serious adverse health outcomes. However, there is no effective therapy to treat these diseases. Lactoferrin (LF), a multi-functional glycoprotein, is protective against various pathophysiological conditions in various disease models. LF shows protective effects against AKI and CKD. LF reduces markers related to inflammation, oxidative stress, apoptosis, and kidney fibrosis, and induces autophagy and mitochondrial biogenesis in the kidney. Although there are no clinical trials of LF to treat kidney disease, several clinical trials and studies on LF-based drug development are ongoing. In this review, we discussed the possible kidney protective mechanisms of LF, as well as the pharmacological and therapeutic advances. The evidence suggests that LF may become a potent pharmacological agent to treat kidney diseases.

Evaluation of biochemical and free radical scavengers of Digitaria exilis L. under osmotic stress

  • Oyinade A., David;Oluwole, Osonubi;Jacob, Oyetunji Olusola
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.331-337
    • /
    • 2019
  • Digitaria exilis L. is an under-utilized crop with high nutritional and medicinal values. It thrives in and is well-adapted to arid areas with low soil nutrients. Using biochemical markers, this study investigates the mechanisms by which D. exilis responds to osmotic stress. Three accessions Dinat Iburua (DIN), Jakah Iburua (JAK) and Jiw Iburua (JIW) were collected from National Cereal Research Institute, Niger State. Two accessions, NG/11/JD/061 and NG/11/JD/062 were also collected from National Centre for Genetic Resources and Biotechnology, Ibadan. Murashige and Skoog medium of approximately 1.2 L was supplemented with polyethylene glycol 6000 to create osmotic pressures of -9.29, -13.93, -20.13, -26.32, -32.51, and 0 MPa (control). Sterilized seeds were inoculated in the medium and placed in the growth room for 4 weeks. Proline accumulation was significantly high in all JAK plants under osmotic stress. Proline and ascorbate peroxidase (p<0.05) activities were directly correlated, thus reinforcing the survivability of JAK during stress. Catalase (CAT) activity was also significantly induced in JAK under osmotic stress, which synergistically improved its tolerability. As a result, >50% of OH-, H2O2, and NO radicals were scavenged. However, other accessions including DIN, NG061, NG062, and JIW showed variations in their responses to different levels of osmotic stress, although not significant. Therefore, JAK possesses a well-equipped free radical quenching system that is protected by the accumulation of the osmolyte proline; therefore, accession JAK is considered osmotolerant. CAT and superoxide dismutase activities were osmostabilized against oxidative stress by proline.

Korean Red Ginseng enhances cardiac hemodynamics on doxorubicin-induced toxicity in rats

  • Jang, Young-Jin;Lee, Dongbin;Hossain, Mohammad Amjad;Aravinthan, Adithan;Kang, Chang-Won;Kim, Nam Soo;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.483-489
    • /
    • 2020
  • Background: Korean Red Ginseng (KRG) has been known to possess many ginsenosides. These ginsenosides are used for curing cardiovascular problems. The present study show the protective potential of KRG against doxorubicin (DOX)-induced myocardial dysfunction, by assessing electrocardiographic, hemodynamic, and biochemical parameters and histopathological findings. Methods: Animals were fed a standard chow and adjusted to their environment for 3 days before the experiments. Next, the rats were equally divided into five groups (n = 9, each group). The animals were administered with KRG (250 and 500 mg/kg) for 10 days and injected with DOX (20 mg/kg, subcutaneously, twice at a 24-h interval) on the 8th and 9th day. Electrocardiography and echocardiography were performed to study hemodynamics. Plasma levels of superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde were measured. In addition, the dose of troponin I and activity of myeloperoxidase in serum and cardiac tissue were analyzed, and the histopathological findings were evaluated using light microscopy. Results: Administration of KRG at a dose of 250 and 500 mg/kg recovered electrocardiographic changes, ejection fraction, fractional shortening, left ventricular systolic pressure, the maximal rate of change in left ventricle contraction (-dP/dtmax), and left ventricle relaxation (-dP/dtmax). In addition, KRG treatment significantly normalized the oxidative stress markers in plasma, dose dependently. In addition, the values of troponin I and myeloperoxidase were ameliorated by KRG treatment, dose dependently. And, KRG treatment showed better histopathological findings when compared with the DOX control group. Conclusion: These mean that KRG mitigates myocardial damage by modulating the hemodynamics, histopathological abnormality, and oxidative stress related to DOX-induced cardiomyopathy in rats. The results of the present study show protective effects of KRG on cardiac toxicity.

Evaluation of Hepatic Antioxidant Defense Systems in Rats Treated with Tetrabromobisphenol-A (Tetrabromobisphenol-A가 처리된 랫드의 간에서 항산화활성 평가)

  • Lee, Sang-Yoon;Yun, Kang-Uk;Park, Sun-Hong;Jung, Sun-Ki;Kang, Keon-Wook;Jeong, Tae-Cheon;Kim, Hyung-Sik;Jeong, Hye-Gwang;Kim, Bong-Hee;Kim, Sang-Kyum
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.4
    • /
    • pp.303-309
    • /
    • 2009
  • Hepatic antioxidant defense systems were examined in rats treated with tetrabromobisphenol-A (TBBPA), a brominated flame retardant, at the doses of 0, 250, 500 and 1,000 mg/kg for four weeks. Hepatic ratio of glutathione disulfide to glutathione (GSH) and levels of malondialdehyde, oxidative stress markers were not changed in rats treated with TBBPA. Hepatic expression of antioxidant enzymes including GSH peroxdiase-1 (GPX-1)/GSH reductase (GR), alpha-, mu- and pi-class glutathione-S-transferase (GST) and gamma-glutamylcysteine ligase catalytic subunit was determined using immunoblot analysis. Alpha-class GSTs, GPX-1 and GR levels were significantly decreased in rats treated with TBBPA at the dose of 500 or 1,000 mg/kg. These results show that TBBPA results in down-regulation of hepatic expression of antioxidant enzymes related with GSH, suggesting the liver in TBBPA-treated rats may be more sensitive to oxidants.

Korean Red Ginseng Induced Cardioprotection against Myocardial Ischemia in Guinea Pig

  • Lim, Kyu Hee;Kang, Chang-Won;Choi, Jin-Yong;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2013
  • This study was designed to evaluate the protective effect of Korean red ginseng (KRG) against ischemia/reperfusion (I/R) injury in isolated guinea pig heart. KRG has been shown to possess various ginsenosides, which are the major components of Panax ginseng. These components are known naturally occurring compounds with beneficial effects and free radical scavenging activity. The heart was induced to ischemia for 60 min, followed by 120 min reperfusion. The hearts were randomly allocated into five groups (n=8 for each group): normal control (N/C), KRG control, I/R control, 250 mg/kg KRG group and 500 mg/kg KRG group. KRG significantly increased hemodynamics parameters such as aortic flow, coronary flow and cardiac output. Moreover, KRG significantly increased left ventricular systolic pressure (LVSP), the maximal rate of contraction (+dP/$dt_{max}$) and maximal rate of relaxation (-dP/$dt_{max}$). Also, treatment of KRG ameliorated electrocardiographic index such as the QRS, QT and RR intervals. Moreover, KRG significantly suppressed the lactate dehydrogenase, creatine kinase-MB fraction and cardiac troponin I and ameliorated the oxidative stress markers such as malondialdehyde and glutathione. KRG was standardized through ultra performance liquid chromatograph analysis for its major ginsenosides. Taken together, KRG has been shown to prevent cardiac injury by normalizing the biochemical and oxidative stress.