• 제목/요약/키워드: Oxidative Stability

검색결과 420건 처리시간 0.022초

Assessment of chicken thigh meat quality of Ross 308 broiler of animal welfare certified farm

  • Kim, Hee-Jin;Shin, Dong-Jin;Kim, Hye-Jin;Cho, Jinwoo;Kwon, Ji-Seon;Kim, Dongwook;Jung, Jong-Hyun;Jang, Aera
    • Animal Bioscience
    • /
    • 제35권12호
    • /
    • pp.1957-1966
    • /
    • 2022
  • Objective: This study aimed to evaluate the difference in the thigh meat quality of Ross 308 broiler from conventional and welfare farms. Methods: Thigh meat samples of Ross 308 broilers (age, 35 d; carcass weight, 1.1 kg) from conventional farm (RCF, n = 60) and animal welfare farms (RAWF, n = 60) were analyzed. Proximate composition, pH, color (lightness, redness, and yellowness), water-holding capacity (WHC), shear force, total aerobic bacteria (TAB), and volatile basic nitrogen (VBN) were measured and the levels of bioactive compounds such as dipeptides (anserine and carnosine), creatine, creatinine, and their anti-oxidation activity were determined. Results: The RCF and RAWF did not differ significantly in their proximate composition, WHC, color, and creatine and carnosine levels. The pH value was significantly lower in RAWF than in RCF on day 7. The shear force value was significantly higher in RAWF than in RCF throughout the storage duration. TAB in RCF on day 9 were significantly higher than those in RAWF. The VBN content of RAWF was significantly lower than that of RCF after 5 days of storage. Creatinine content was significantly higher in RAWF (3.50 mg/100 g) than in RCF (3.08 mg/100 g) on day 1. Along with higher carnosine and anserine contents of RAWF, it had significantly higher 2,2-diphenyl-1-picrylhydrazyl and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities than those of RCF. Conclusion: These results imply that the animal welfare farming system beneficially affects the overall oxidative stability of Ross 308 thigh meat.

Quality Enhancement of Frozen Chicken Meat Marinated with Phosphate Alternatives

  • Mahabbat Ali;Shine Htet ,Aung;Edirisinghe Dewage Nalaka Sandun Abeyrathne;Ji-Young Park;Jong Hyun Jung;Aera Jang;Jong Youn Jeong;Ki-Chang Nam
    • Food Science of Animal Resources
    • /
    • 제43권2호
    • /
    • pp.245-268
    • /
    • 2023
  • The effects of phosphate alternatives on meat quality in marinated chicken were investigated with the application of chilling and freezing. Breast muscles were injected with solution of the green weight containing 1.5% NaCl and 2% sodium tripolyphosphate (STPP) or phosphate alternatives. Treatment variables consisted of no phosphate [control (-)], 0.3% sodium tripolyphosphate [control (+)], 0.3% prune juice (PJ), 0.3% oyster shell, 0.3% nano-oyster shell, and 0.3% yeast and lemon extract (YLE) powder. One-third of the meat samples were stored at 4℃ for 1 d, and the rest of the meats were kept at -18℃ for 7 d. In chilled meat, a lower drip loss was noted for control (+) and YLE, whereas higher cooking yield in YLE compared to all tested groups. Compared with control (+), the other treatments except PJ showed higher pH, water holding capacity, moisture content, lower thawing and cooking loss, and shear force. Natural phosphate alternatives except for PJ, improved the CIE L* compared to control (-), and upregulated total protein solubility. However, phosphate alternatives showed similar or higher oxidative stability and impedance measurement compared to control (+), and an extensive effect on myofibrillar fragmentation index. A limited effect was observed for C*, h°, and free amino acids in treated meat. Eventually, the texture profile attributes in cooked of phosphate alternatives improved except for PJ. The results indicate the high potential use of natural additives could be promising and effective methods for replacing synthetic phosphate in chilled and frozen chicken with quality enhancement.

Effects of heat and gamma radiation on the degradation behaviour of fluoroelastomer in a simulated severe accident environment

  • Inyoung Song ;Taehyun Lee ;Kyungha Ryu ;Yong Jin Kim ;Myung Sung Kim ;Jong Won Park;Ji Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4514-4521
    • /
    • 2022
  • In this study, the effects of heat and radiation on the degradation behaviour of fluoroelastomer under simulated normal operation and a severe accident environment were investigated using sequential testing of gamma irradiation and thermal degradation. Tensile properties and Shore A hardness were measured, and thermogravimetric analysis was used to evaluate the degradation behaviour of fluoroelastomer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the structural changes of the fluoroelastomer. Heat and radiation generated in nuclear power plant break and deform the chemical bonds, and fluoroelastomer exposed to these environments have decreased C-H and functional groups that contain oxygen and double bonds such as C-O, C=O and C=C were generated. These functional groups were formed by auto oxidation by reacting free radicals generated from the cleaved bond with oxygen in the atmosphere. In this auto oxidation reaction, crosslinks were generated where bonded to each other, and the mobility of molecules was decreased, and as a result, the fluoroelastomer was hardened. This hardening behaviour occurred more significantly in the severe accident environment than in the normal operation condition, and it was found that thermal stability decreased with the generation of unstable structures by crosslinking.

Effect of sous-vide cooking conditions on the physicochemical, microbiological and microstructural properties of duck breast meat

  • Dong-Min Shin;Jong Hyeok Yune;Dong-Hyun Kim;Sung Gu Han
    • Animal Bioscience
    • /
    • 제36권10호
    • /
    • pp.1596-1603
    • /
    • 2023
  • Objective: Sous-vide cooking offers several advantages for poultry meat, including enhanced tenderness, reduced cooking loss, and improved product yield. However, in duck meat, there are challenges associated with using the sous-vide method. The prolonged cooking time at low temperatures can lead to unstable microbial and oxidative stabilities. Thus, we aimed to assess how varying sous-vide cooking temperatures and durations affect the physicochemical and microbial characteristics of duck breast meat, with the goal of identifying an optimal cooking condition. Methods: Duck breast meat (Anas platyrhynchos) aged 42 days and with an average weight of 1,400±50 g, underwent cooking under various conditions (ranging from 50℃ to 80℃) for either 60 or 180 min. Then, physicochemical, microbial, and microstructural properties of the cooked duck breast meat were assessed. Results: Different cooking conditions affected the quality attributes of the meat. The cooking loss, lightness, yellowness, Hue angle, whiteness, and thiobarbituric acid reactive substance (TBARS) values of the duck breast meat increased with the increase in cooking temperature and time. In contrast, the redness and chroma values decreased with the increase in cooking temperature and time. Cooking of samples higher than 60℃ increased the volatile basic nitrogen contents and TBARS. Microbial analysis revealed the presence of Escherichia coli and Coliform only in the samples cooked at 50℃ and raw meat. Cooking at lower temperature and shorter time increased the tenderness of the meat. Microstructure analysis showed that the contraction of myofibrils and meat density increased upon increasing the cooking temperature and time. Conclusion: Our data indicate that the optimal sous-vide method for duck breast meat was cooking at 60℃ for 60 min. This temperature and time conditions showed good texture properties and microbial stability, and low level of TBARS of the duck breast meat.

Formulation and Quality Evaluation of Chicken Nuggets Supplemented with Beef and Chicken Livers

  • Liaqat Mehmood;Syeda Afnan Mujahid;Sawera Asghar;Hafiz Ubaid ur Rahman;Nauman Khalid
    • Food Science of Animal Resources
    • /
    • 제44권3호
    • /
    • pp.620-634
    • /
    • 2024
  • This study explores the potential of utilizing meat byproducts, specifically chicken and beef liver, to enhance the nutritional value of processed foods like chicken nuggets. Proximate analysis was conducted on the livers, including moisture, ash, fat, and protein content, and degradation potential was observed. Antioxidant potential was analyzed through 2,2-diphenyl-1-picrylhydrazyl (DPPH). The total phenolic content (TPC), oxidative stability through peroxide value (POV), and free fatty acid (FFA) were performed to evaluate quality changes during seven-day storage. The radical scavenging activity showed that beef liver has excellent antioxidant capacity (61.55%- and 195.89- mM gallic acid equivalent for DPPH and TPC, respectively) compared to chicken liver and significantly increased the antioxidant potential of nuggets by 5%-10%. POV and FFA values increased with increased storage days for the liver and its incorporation in nuggets. However, the values remained under the 10 meq/kg threshold. Incorporating the livers into chicken nuggets led to a significant (p=0.000) improvement in nutritional content, particularly a 1.5%-2% increase in protein, with a similar increase in mineral content. Texture and sensory evaluations indicated favorable consumer acceptability for liver-enriched nuggets. Overall, this research shows the value of adding liver as a functional ingredient to enhance the nutritional profile of processed foods.

Quality Characteristics of Cold-pressed Rapeseed Oils according to Different Varieties in Republic of Korea (국내 유채 품종별 저온압착유의 품질특성 비교)

  • Da-Hee An;Gyeong-Dan Yu;Jae-Hee Jeong;Ji-Bong Choi;Hyun-Min Cho;Dong-Sung Kim;Young-Lok Cha
    • The Korean Journal of Food And Nutrition
    • /
    • 제37권4호
    • /
    • pp.171-179
    • /
    • 2024
  • Rapeseed (Brassica napus L.) oil is mostly refined oil (RO). However, with increasing interest in health, the consumption of cold-pressed oil (CPO) without chemical refining is increasing in Korea. In this study, quality characteristics of CPO from rapeseed varieties 'Jungmo7001', 'Jungmo7002', 'Jungmo7003', and 'Yuryeo' were evaluated and compared with RO, a commercial product. L-value and a-value were lower while b-value was significantly higher for CPO than those for RO. Analysis of fatty acid compositions of each oil revealed that CPO from 'Yuryeo' contained the highest oleic acid at 74%. Analyses of contents of bioactive compounds in CPOs and RO revealed that contents of tocopherol, 𝛽-carotene, and canolol were the highest in CPOs from 'Jungmo7003', 'Jungmo7002', and 'Jungmo7001' at 55.5, 0.3, and 0.2 mg/100 g, respectively. In addition, CPOs contained higher contents of bioactive compounds than RO, suggesting that CPO could provide health benefits. The induction period of CPOs measured using Rancimat were 9~52% longer than that for RO, indicating that CPOs had a higher oxidative stability under given conditions. These results could be used to obtain basic data on quality of domestic rapeseed varieties.

Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods (초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성)

  • Park, Jin-Seok;Cho, Yeon-Jin;Jeong, Yu-Rin;Chun, Byung-Soo
    • Clean Technology
    • /
    • 제25권4호
    • /
    • pp.275-282
    • /
    • 2019
  • In this study, the extraction of Conger myriaster oil by using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated. The extraction conditions conducted for SC-CO2 varied for pressure (25, 30 MPa) and temperature (45, 55 ℃), while the SC-CO2 flow rate was kept constant during the experiment (27 g min-1) and hexane was used as a conventional organic solvent. The extraction yield indicated that the best extraction condition would be SC-CO2 at 55 ℃ and 30 MPa, resulting in the highest yield of 37.73 ± 0.14%. The oils were characterized for their fatty acid (FAs) composition using gas chromatography, while it was revealed that the major FAs were mystric acid, palmitoleic acid, oleic acid, electroosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free fatty acid. The best oxidative stability was obtained from SC-CO2 extracted oil at 30 MPa and 55 ℃. There was a significant difference in the color properties of the SC-CO2 and hexane extracted oils, with the SC-CO2 extracted oil showing better chromaticity than the oil extracted using hexane. Extracting oils from C. myriaster with SC-CO2 could bring better economic benefits than using organic solvents. When supercritical carbon dioxide was used, there was no post-treatment process; thus, it was confirmed that this is a more environmentally friendly oil extraction method.

Effectiveness and Preparation of Microsome containing Fermented Squalene (발효 스쿠알렌을 함유한 마이크로좀의 제조 및 효능효과)

  • Kim, Ye-Jin;Kim, Tae-Hyun;Cho, Heui-Kyoung;Seong, Nak-Jun;Kim, In-Young;Yoo, Kwang-Ho;Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • 제37권5호
    • /
    • pp.1159-1170
    • /
    • 2020
  • In this study, to improve the stability of fermented squalene developed using microorganisms, Microsome-SQ20 was prepared, and its physical behavior, properties, and efficacy were studied. The appearance of Microsome-SQ20 was a transparent liquid, no smell, and had a specific smell. The color was a transparent liquid, and the specific gravity was 0.928 and the pH was 5.82 (20% solution), forming a nano-emulsion suitable for use in cosmetics. It was confirmed that the content of the main component of squalene was 20.05%, which was stably sealed. The particle size measured by 0.1% aqueous solution of Microsome-SQ20 was 134.8 nm to obtain a bluish emulsified phase. The antioxidant effects of F-SQ and MF-SQ by DPPH radicals were 80.72% and 81.5%, respectively, showing superior effects compared to L-ascorbic acid. The cell viability of squalene (SQ), fermented squalene (F-SQ) and microsome squalene (MF-SQ) was at 10 ppm, respectively, showing 121.2%, 150.3%, and 129.9% cell viability. It was found that SQ, F-SQ, and MF-SQ had an elastase inhibitory ability of 8.7%, 10.33% and 8.7% at 10 ppm, respectively. In addition, the inhibitory ability of MMP-1 was 1.55%, 41.44%, 31.79% at 10 ppm for SQ, F-SQ, and MF-SQ, respectively, indicating that F-SQ significantly reduced the MMP-1 expression.

Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Song, Hyun-A;Jeong, Jin-Young;Lim, Yong-Taik;Chung, Bong-Hyun;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.92-97
    • /
    • 2009
  • As nanomaterials might enter into cells and have high reactivity with intracellular structures, it is necessary to assay possible genotoxic risk of them. One of these approaches, we investigated possible genotoxic potential of gold nanoparticle (AuNP) using L5178Y cells. Four different sizes of AuNP (4, 15, 100 or 200 nm) were synthesized and the sizes and structures of AuNP were analyzed using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and stability was analyzed by a UV/Vis. Spectrophotometer. Cytotoxicity was assessed by direct cell counting, and cellular location was detected by dark field microscope at 6, 24 and 48 h after treatment of AuNP. Comet assay was conducted to examine DNA damage and tumor necrosis factor (TNF)-${\alpha}$ mRNA level was assay by real-time reverse transcription polymerase chain reaction. Synthetic AuNP (4, 50, 100 and 200 nm size) had constant characteristics and stability confirmed by TEM, SEM and spectrophotometer for 10 days, respectively. Dark field microscope revealed the location of AuNP in the cytoplasm at 6, 24 and 48 h. Treatment of 4 nm AuNP induced dose and time dependent cytotoxicity, while other sizes of AuNP did not. However, Comet assay represented that treatment of 100 nm and 200 nm AuNP significantly increased DNA damage compared to vehicle control (p <0.01). Treatment of 100 nm and 200 nm AuNP significantly increased TNF-${\alpha}$ mRNA expression compared to vehicle control (p<0.05, p<0.01, respectively). Taken together, AuNP induced DNA damage in L5178Y cell, associated with induction of oxidative stress.

Encapsulation of Avocado Oil Using Spray Drying (분무건조를 이용한 아보카도 오일의 캡슐화)

  • Bae, Eun-Kyung;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • 제40권3호
    • /
    • pp.303-310
    • /
    • 2008
  • This study was performed to verify the effects of encapsulation against oil oxidation. Thiobarbituric acid (TBA) values of samples were compared during storage at $60^{\circ}C$, indicating that the encapsulated avocado oil had lower TBA values than the free avocado oil. Microcapsules consisting of a whey protein isolate (WPI)-only wall system had slightly improved oxidative stability; however, spray-dried particles containing a high proportion of maltodextrin (MD) clearly offered better protection from oxidation than the other forms of encapsulation. The chlorophyll (Chl) content of the encapsulated avocado oil was higher than that of the free oil sample. When compared to the control, all wall systems protected the change of the chlorophyll content storage. No large differences were observed between the encapsulated powders according to the various wall materials. The color of the encapsulated oil changed from green to yellowish-green, indicating the formation of pheophytin from chlorophyll. The yellowish color of the oil correlated with a reduced total Chl content. In conclusion, encapsulation with spray drying for avocado oil could lead to improved stability during storage with respect to oxidation and the preservation of chlorophyll.