• 제목/요약/키워드: Oxidation-reduction cycle

검색결과 78건 처리시간 0.021초

$UO_2$ 소결체의 산화/환원에 의해 제조된 분말 특성 (Characteristics of Powder Prepared from Unirradiated $UO_2$ Pellets by Oxidation and Reduction Method)

  • 김봉구;송근우;이정원;배기광;양명승;박현수
    • 한국세라믹학회지
    • /
    • 제32권4호
    • /
    • pp.471-481
    • /
    • 1995
  • Unirradiated UO2 pellets were pulverized by oxidation in air at 40$0^{\circ}C$, and the oxidized powders were reduced in H2 and CO atmospheres at $600^{\circ}C$. During the oxidation of UO2 at 40$0^{\circ}C$, intergranular cracks which caused the spallation were mainly developed by the volume contraction due to the formation of intermediate phase (U4O9 or U3O7). As oxidation proceeded, U3O8 finally formed. As the oxidation/reduction cycles were repeated, the powder surface became coarser, specific surface area was increased and average particle size was decreased. The sintered densities of the powder were increased by the oxidation/reduction cycle due to the characteristic changes of the powder.

  • PDF

Effect of High Temperature Treatment and Subsequent Oxidation anil Reduction on Powder Property of Simulated Spent Fuel

  • Song, Kun-Woo;Kim, Young-Ho;Kim, Bong-Goo;Lee, Jung-Won;Kim, Han-Soo;Yang, Myung-Seung;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.366-372
    • /
    • 1996
  • The simulated spent PWR fuel pellet which is corresponding to the turnup of 33,000 MWD/MTU is prepared by adding 11 fission-product elements to UO$_2$. The simulated spent fuel pellet is treated at 40$0^{\circ}C$ in air (oxidation), at 110$0^{\circ}C$ in air (high-temperature treatment), and at $600^{\circ}C$ in hydrogen (reduction). The product is treated through additional addition and reduction up to 3 cycles. Pellets are completely pulverized by the first oxidation, and the high-temperature treatment causes particle and crystallite to grow and surface to be smooth, and thus particle size significantly increases and surface area decreases. The reduction following the high-temperature treatment decreases much the particle size by means of the formation of intercrystalline cracks. The particle size decreases a little during the second oxidation and reduction cycle and then remains nearly constant during the third and fourth cycles. Surface area of pounder increases progressively with the repetition of oxidation and reduction cycles, mainly due to the formation of Surface cracks. The degradation of surface area resulting from high-temperature treatment is restored by too subsequent resulting oxidation and reduction cycles.

  • PDF

Effect of Electrochemical Oxidation-Reduction Cycles on Surface Structures and Electrocatalytic Oxygen Reduction Activity of Au Electrodes

  • Lim, Taejung;Kim, Jongwon
    • 대한화학회지
    • /
    • 제60권5호
    • /
    • pp.310-316
    • /
    • 2016
  • Oxidation-reduction cycling (ORC) procedures are widely used for cleaning nanoparticle surfaces when investigating their electrocatalytic activities. In this work, the effect of ORC on the surface structures and electrocatalytic oxygen reduction activity of Au electrodes is analyzed. Different structural changes and variations in electrocatalysis are observed depending on the initial structure of the Au electrodes, such as flat bulk, nanoporous, nanoplate, or dendritic Au. In particular, dendritic Au structures lost their sharp-edge morphology during the ORC process, resulting in a significant decrease in its electrocatalytic oxygen reduction activity. The results shown in this paper provide an insight into the pretreatment of nanoparticle-based electrodes during investigation of their electrocatalytic activities.

매체순환연소용 산소전달입자의 반응성에 미치는 H2S의 영향 (Effect of H2S on Reactivity of Oxygen Carrier Particle for Chemical Looping Combustion)

  • 김하나;문종호;진경태;백점인;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.412-420
    • /
    • 2016
  • Effect of $H_2S$ on reactivity of oxygen carrier was measured and discussed using fluidized bed reactor and SDN70 oxygen carrier. We could get 100% of fuel conversion and $CO_2$ selectivity even though $H_2S$ containing simulated syngas was used as fuel for reduction. Absorbed sulfur was released during oxidation and $N_2$ purge step after oxidation as $SO_2$ form. We could get 100% of fuel conversion and $CO_2$ selectivity during cyclic reduction-oxidation tests up to 10th cycle. However, only 6~7% of sulfur can be removed during oxidation and $N_2$ purge step and 93~94% of sulfur was accumulated in the oxygen carrier. Therefore we could conclude that total removal of sulfur was not possible. $SO_2$ emission during oxidation decreased as the number of cycle increased. Therefore we could expect that the reactivity of oxygen carrier will be decreased with time.

조류가 발생한 수질에 과망간산나트륨과 차아염소산나트륨이 세포 손상도 및 부산물 발생에 미치는 영향 비교 (Comparison of sodium permanganate and sodium hypochlorite on algae-containing water: algae cell integrity and byproduct formation)

  • 양보람;홍석원;최재우
    • 상하수도학회지
    • /
    • 제36권5호
    • /
    • pp.249-260
    • /
    • 2022
  • The effect of permanganate oxidation was investigated as water treatment strategy with a focus on comparing the reaction characteristics of NaOCl and sodium permanganate (NaMnO4) in algae (Monoraphidium sp., Micractinium inermum, Microcystis aeruginosa)-contained water. Flow cytometry explained that chlorine exposure easily damaged algae cells. Damaged algae cells release intracellular organic matter, which increases the concentration of organic matter in the water, which is higher than by NaMnO4. The oxidation reaction resulted in the release of toxin (microcystin-LR, MC-LR) in water, and the reaction of algal organic matter with NaOCl resulted in trihalomethanes (THMs) concentration increase. The oxidation results by NaMnO4 significantly improved the concentration reduction of THMs and MC-LR. Therefore, this study suggests that NaMnO4 is effective as a pre-oxidant for reducing algae damage and byproducts in water treatment process.

산화-환원 싸이클 조업에 의한 고순도 수소생성 (High Purity Hydrogen Production by Redox Cycle Operation)

  • 전법주;박지훈
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

열중량분석기에서 석탄과 산소공여입자의 반응 특성 (Reaction Characteristics of Coal and Oxygen Carrier Particle in a Thermogravimetric Analyzer)

  • 류호정;김영주;박영성;박문희
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.213-222
    • /
    • 2011
  • To check adaptability of low ash coal(hyper coal) to chemical looping combustion, reaction characteristics of two coals (Roto and Hyper coal) with two oxygen carriers (NiO/bentonite, OCN703-1100) have been investigated in a thermogravimetric analyzer. Hyper coal represented low combustion rate and high ignition temperature, high volatile content and high devolatilization rate, and therefore, showed worse oxygen transfer during successive 10 cycle reduction-oxidation test than Roto coal. Finally we selected Roto coal as the candidate coal for chemical looping combustion. For Roto coal, OCN703-1100 particle showed better oxygen transfer than NiO/bentonite particle. During 10 cycle reduction oxidation test, change of the extent of oxidation (Wo) was negligible and we could conclude that both oxygen carriers have sufficient regeneration ability.

음극환원법에 의한 Pure Ti의 전기화학적 열수처리 (Electrochemical hydrothermal treatment on Pure Titanium by the method of Cathodic reduction)

  • 송재주;김경선
    • 한국치위생학회지
    • /
    • 제7권4호
    • /
    • pp.471-479
    • /
    • 2007
  • The purpose of this study was to examine the optimum condition of impulse during the anodic spark oxidation applying pulse current as well as to find the excellent condition for HA precipitation the after electrochemical hydrothermal treatment by cathode reduction method. After anodic spark oxidation, the anodized specimen and the Pt plate connected cathode and anode, respectively. Hydrothermal treatment performed at 90, 120, $150^{\circ}C$ for 2 hours in the electrolyte containing $K_2HPO_4$, $CaCl_2{\cdot}2H_2O$, Tris(Hydroxymethyl)-$(CH_2OH)_3\;CNH_2$(Aminomethane), and NaCl. The optimum impulse voltage for anodic spark oxidation was 350V. The optimum pulse cycle measured at 10 mS. The HA crystals precipitated excellently by cathode reduction at $150^{\circ}C$ for 2 hours. The phases of anatase, rutile, and HA coating on the surface of modified titanium surface immersed in Hanks' solution for 3weeks were detected by XRD measurement and the intensity of HA crystal phase has increased by temperature and time of hydrothermal treatment. According to the our experiments, we found that Pure Ti will be good materials of bioactivity and biocompatibility.

  • PDF

산화ㆍ환원처리된 $UO_2$ 분말의 분쇄특성 연구 (Study On the Characteristics of Milled $UO_2$ Powder Prepared by Oxidation and Reduction Process)

  • 이재원;이정원
    • 자원리싸이클링
    • /
    • 제11권4호
    • /
    • pp.3-10
    • /
    • 2002
  • 핵연료 원료인 $UO_2$ 분말을 사용해 원자로에서 연소된 사용후 핵연료 소결체를 모의 제조하여 1회 산화ㆍ환원처리하여 분말로 만든 후, 건ㆍ습식 attrition 분쇄에 따른 분말의 특성 및 소결성을 조사하였다. 분쇄에 의한 분말의 평균입자크기는 건식분쇄의 경우에는 1 $mu extrm{m}$ 이하인 미분말이 쉽게 생성되었으나, 습식분쇄에서는 그 이상의 분말만이 생성되었다. 그리고 분쇄분말의 비표면적은 건식분쇄한 경우가 습식분쇄한 경우 보다 높았다. 분말의 미세구조는 건식분쇄에 의해서는 느슨한 응집체가 형성되었으며, 습식분쇄 분말은 압분성이 낮은 불규칙적이고 각진 입자형태를 나타내었다. 건식분쇄에 의해서 압분체 밀도는 크게 증가하며 소결체 요구 조건을 만족하는 이론밀도의 95%이상이 되고 평균 결정립 크기가 8 $\mu\textrm{m}$이상인 소결체를 얻을 수 있었다.

가압 유동층 반응기에서 산소공여입자의 합성가스 연소 특성 (Syngas Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor)

  • 박상수;이동호;최원길;류호정;이영우
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.83-92
    • /
    • 2012
  • Syngas combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using simulated syngas and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction conditions and no NO emission at oxidation conditions. Moreover, OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration with temperature. However, fuel conversion and $CO_2$ selectivity increased and CO emission decreased as pressure and gas residence time increased.