• Title/Summary/Keyword: Oxidation reactions

Search Result 443, Processing Time 0.027 seconds

The Effect of Liquid Height on Sonochemical Reactions in 74 kHz Sonoreactors (74 kHz 초음파 반응기에서 수위 변화에 따른 초음파 화학 반응의 변화)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.80-85
    • /
    • 2016
  • Acoustic cavitation can induce various sonochemical effects including pyrolysis and radical reactions and sonophysical effects including microjets and shockwave. In environmental engineering field, ultrasound technology using sonochemical effects can be useful for the removal and mineralization of recalcitrant trace pollutants in aqueous phase as one of emerging advanced oxidation processes (AOPs). In this study, the effect of liquid height, the distance from the transducer to the water surface, on sonochemical oxidation reactions was investigated using KI dosimetry. As the liquid height/volume increased (40~400 mm), the cavitation yield steadily increased even though the power density drastically decreased. It was found that the enhancement at higher liquid height conditions was due to the formation of standing wave field, where cavitation events could stably occur and a large amount of oxidizing radicals such as OH radicals could be continuously provided.

In-Situ Spectroelectrochemical Studies of Manganese(II) Oxidation

  • Zhang, Haiyan;Park, Su-Moon
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.569-574
    • /
    • 1995
  • In-situ spectroelectrochemical studies have been carried out on the oxidation of Mn(II) at platinum, gold, lead dioxide, and bismuth doped lead dioxide electrodes. The Mn(III), $MnO_2$, and/or ${MnO_4}^-$ species are produced depending on experimental conditions employed during electrolysis. Mn(III) is shown to be produced from a very early stage during the anodic potential scan and undergo disproportionation-conproportionation reactions depending on the relative concentration of each species near the electrode surface. An oxidation mechanism consistent with these observations is proposed.

  • PDF

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

Kinetics of Chromium(III) Oxidation by Various Manganess Oxides (망간 산화물에 의한 3가 크롬의 산화)

  • Chung, Jong-Bae;Zasoski, Robert J.;Lim, Sun-Uk
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.414-420
    • /
    • 1994
  • Birnessite, pyrolusite and hausmannite were synthesized and tested for the ability to oxidize Cr(III) to Cr(VI). These oxides differed in zero point of charge, surface area, and crystallinity. The kinetic study showed that Cr(III) oxidation on the Mn-oxide surface is a first-order reaction. The reaction rate was various for different oxide at different conditions. Generally the reaction by hausmannite, containing Mn(III), was faster than the others, and oxidation by pyrolusite was much slower. Solution pH and initial Cr(III) concentration had a significant effect on the reaction. Inhibited oxidation at higher pH and initial Cr(III) concentration could be due to the chance of Cr(III) precipitation or complexing on the oxide surface. Oxidations by birnessite and hausmannite were faster at lower pH, but pyrolusite exhibited increased oxidation capacity at higher pH in the range between 3.0 and 5.0. Reactions were also temperature sensitive. Although calculated activation energies for the oxidation reactions at pH 3.0 were higher than the general activation energy for diffusion, there is no experimental evidence to suggest which reaction is the rate limiting step.

  • PDF

Photofading of Wool Colored by Tryptophan Color Reactions

  • Shosenji, Hideto;Anpo, Masafumi;Kuwahara, Yutaka;Sawada, Tsuyoshi;Donowaki, Kiyoshi
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.11a
    • /
    • pp.103-104
    • /
    • 2009
  • Treatment of wool fabric with aromatic aldehydes followed by oxidation with hydrogen peroxide gave rise to coloring reaction. The colored fabric was bleached by reduction and recovered the color by oxidation. The oxidation in ethanol solution gave higher k/s values than that in aqueous solution. Photo-stability of the colored fabric was improved by treating with nickel sulfate.

  • PDF

Anodic Reactions at a Pb-Ag Anode in Sulfuric Acid Solutions Containing Manganese(II) (망간(II)을 함유한 황산용액에서 Pb-Ag 양극의 산화반응)

  • Lee, Man-Seung;Nicol, M.J.
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.34-41
    • /
    • 2017
  • The effect of Mn(II) concentration on the anodic reactions occurring on a Pb-Ag electrode in sulfuric acid solutions has been studied by potentiostatic oxidation in the potential range of 1.8 to 2.0 V. High oxidation potentials and low initial concentrations of Mn(II) resulted in higher concentrations of soluble Mn(III) ions which were obtained from spectrophotometric analysis of the solution after oxidation. $MnO_2$ was deposited on the electrode by electrochemical oxidation of Mn(II) at 1.8 and 1.9 V, while it was formed by disproportionation of Mn(III) at 2.0 V. No $PbO_2$ was formed in the presence of Mn(II) during potentiostatic oxidation treatment for two hours at 1.8 V. Chemical reduction of $PbO_2$ with Mn(II) led to a decrease in the amount of $PbO_2$ as Mn(II) concentration increased at 1.9 and 2.0 V.