• Title/Summary/Keyword: Oxidation layer

Search Result 1,134, Processing Time 0.027 seconds

Effect of Mo and Nb on High Temperature Oxidation of TiAl Alloys (Mo, Nb첨가가 TiAl합금의 산화에 미치는 영향)

  • Kim Jae-Woon;Lee Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.614-618
    • /
    • 2004
  • Alloys of $Ti46\%Al-2\%Mo-2\%Nb$ were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The alloys displayed good oxidation resistance due mainly to the beneficial effects of Mo and Nb. The oxide scales formed consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_{2}O_3-rich$ layer, and an inner mixed layer of ($TiO_{2}+Al_{2}O_3$). Molybdenum and niobium dissolved in the scale effectively improved oxidation resistance. They were mainly distributed in the inner mixed layer of ($TiO_{2}+Al_{2}O_3$).

Steam Pressure Effects on the Oxidation of Low-Sn Zircaloy-4 at High Temperatures (고압 수증기에 따른 Low-Sn Zircaloy-4의 고온 산화 거동)

  • Yang, Sung-Woo;Park, Kwang-Heon
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.180-184
    • /
    • 2007
  • A new zirconium alloy, low-Sn Zircaloy-4 was investigated to see the effects of high pressure steam on the oxidation at high temperatures. High pressure steam turned out to enhance the oxidation at high temperatures below $1000^{\circ}C$. The oxide layer groved to deviate from the uniform layer under high steam pressures, and usually cracks were found at the thicker parts in the oxide layer. High pressure steam seems to destabilize the tetragonal oxides near the metal layer, and the monoclinic oxides transformed from the destabilized tetragonal oxides are structurally not sound, resulting in enhanced oxidation under high pressure steam.

Oxidation and Neutral Electrolytic Pickling Behavior of 304 and 430 Stainless Steels (304 및 430 스테인레스 강판의 산화 및 중성염 전해산세 거동)

  • Kim T. S.;Park Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.285-293
    • /
    • 2004
  • Oxidation behavior of 304 and 430 stainless steel were studied using thin film X-ray analysis and glow discharge spectrum analysis (here-after GDS). The oxidation layer of 304 stainless steel was composed of $Cr_2O_3\;and\;FeCrO_4$ and its thickness was about $1.5{\mu}m$ after $1\~5$ minutes of annealing at $1120^{\circ}C$ open air. However, the oxidation layer of 430 stainless steels was mainly composed of $Cr_2O_3$ and its typical thickness was 0.5um after $1\~5$ minutes of annealing at $1000^{\circ}C$ open air. Electro-chemical analysis revealed that the descaling of oxidation layer could be activated by Fe, Cr dissolution from the matrix behind the oxidation layer at the current density of $5\~10ASD$ and by Fe, Cr-oxide dissolution from the oxidation layer at the current density over than 10ASD. Electrolytic stripping of 430 and 304 revealed the intial incubation period of descaling by oxygen evolving at low current density range such as $5\~10ASD$. However the dissolution of oxide layer was occurred when applying the anodic current of $10\~20ASD$ on 430 and 304 stainless steels. It was suggested that the electrolytic pickling of high Cr bearing stainless steel such as 430 and 304 seemed to be the more effective in the high current density range such as $10\~20ASD$ than the low current density range such as $5\~10ASD$.

  • PDF

Effect of Cr/Ti/Al Elements on High Temperature Oxidation Behavior of a Ni-Based Superalloy with Thermal Exposure (고온 노출 니켈기 초내열합금 터빈 블레이드의 Cr/Ti/Al 성분이 고온 산화에 미치는 영향)

  • Byung Hak Choe;Sung Hee Han;Dae Hyun Kim;Jong Kee Ahn;Jae Hyun Lee;Kwang Soo Choi
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • High-temperature oxidation of a Ni-based superalloy was analyzed with samples taken from gas turbine blades, where the samples were heat-treated and thermally exposed. The effect of Cr/Ti/Al elements in the alloy on high temperature oxidation was investigated using an optical microscope, SEM/EDS, and TEM. A high-Cr/high-Ti oxide layer was formed on the blade surface under the heat-treated state considered to be the initial stage of high-temperature oxidation. In addition, a PFZ (γ' precipitate free zone) accompanied by Cr carbide of Cr23C6 and high Cr-Co phase as a kind of TCP precipitation was formed under the surface layer. Pits of several ㎛ depth containing high-Al content oxide was observed at the boundary between the oxide layer and PFZ. However, high temperature oxidation formed on the thermally exposed blade surface consisted of the following steps: ① Ti-oxide formation in the center of the oxide layer, ② Cr-oxide formation surrounding the inner oxide layer, and ③ Al-oxide formation in the pits directly under the Cr oxide layer. It is estimated that the Cr content of Ni-based superalloys improves the oxidation resistance of the alloy by forming dense oxide layer, but produced the σ or µ phase of TCP precipitation with the high-Cr component resulting in material brittleness.

Oxidation Behaviors of Nickel-Base Superalloys in High Temperature Steam Environments (고온 수증기 환경에서 Ni기 초합금의 산화특성)

  • Kim, Donghoon;Koo, Jahyun;Kim, Daejong;Yoo, Young-Sung;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.26-33
    • /
    • 2011
  • To evaluate steam oxidation behaviours of Alloy 617 and Haynes 230, oxidation test were performed at $900^{\circ}C$ in steam and $steam+20\;vol.-%\;H_2$ environments. Oxidation rate in steam condition was similar to that in air for Alloy 617, while it was slightly lower for Haynes 230. When hydrogen was added to steam, oxidation rate was enhanced. Isolated $MnTiO_3$ particle were formed on $Cr_2O_3$ oxide layer and sub layer $Cr_2O_3$ were formed in steam and $steam+20\;vol.-%\;H_2$ for Alloy 617. On the other hands, $MnCr_2O_3$ layer were formed on top of $Cr_2O_3$ oxide layer for Haynes 230. The extensive sub layer $Cr_2O_3$ formation was resulted from the oxygen inward diffusion in such environments. When hydrogen was added, the oxide morphology was changed from polygonal to platelet because of the accelerated diffusion of cations under the oxide layer. In addition, decarburized zone was extended as hydrogen participated into the reactions causing carbide dissolution.

Oxidation of CrAlMgSiN thin films between 600 and 900℃ in air (CrAlMgSiN 박막의 600-900℃에서의 대기중 산화)

  • Won, Seong-Bin;Xu, Chunyu;Hwang, Yeon-Sang;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.112-113
    • /
    • 2013
  • Thin CrAlMgSiN films, whose composition were 30.6Cr-11.1Al-7.3Mg-1.2Si-49.8N (at.%), were deposited on steel substrates in a cathodic arc plasma deposition system. They consisted of alternating crystalline Cr-N and AlMgSiN nanolayers. After oxidation at $800^{\circ}C$ for 200 h in air, a thin oxide layer formed by outward diffusion of Cr, Mg, Al, Fe, and N, and inward diffusion of O ions. Silicon ions were relatively immobile at $800^{\circ}C$. After oxidation at $900^{\circ}C$ for 10 h in air, a thin $Cr_2O_3$ layer containing dissolved ions of Al, Mg, Si, and Fe formed. Silicon ions became mobile at $900^{\circ}C$. After oxidation at $900^{\circ}C$ for 50 h in air, a thin $SiO_2-rich$ layer formed underneath the thin $Cr_2O_3$ layer. The film displayed good oxidation resistance. The main factor that decreased the oxidation resistance of the film was the outward diffusion and subsequent oxidation of Fe at the sample surface, particularly along the coated sample edge.

  • PDF

The effect of Cr coated on the Ni and Inconel 601 substrate by PECVD on the oxidation behavior at high temperature (PECVD법으로 증착한 Cr코팅층이 Inconel 601과 Ni의 내산화성에 미치는 영향)

  • 강옥경;정명모;김길무
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.142-151
    • /
    • 1995
  • In this research, a thin layer of Cr was coated on the pure Ni and Inconel 601 by PECVD (Plasma Enhanced Chemical Vapor Deposition) in order to study the effect of Cr on the oxidation behavior at high temperature. Cr coated Inconel 601, which was oxidized at $1100^{\circ}C$ for 24 hours, formed a protective $Cr_2O_3$ oxide layer and the resistance to isothermai oxidation was improved. On the other hand, oxidation resistance of Cr coated Inconel 601 at 100$0^{\circ}C$ was not significantly improved, probably due to the formation or insufficient $Cr_2O_3$ layer. But, when oxidized at $1000^{\circ}C$ and $1100^{\circ}C$ for 100 hours, Cr coated Inconel 601 improved isothermal oxidation resistance by the formation of continuous $Cr_2O_3$ external scale and by the development of $Al_2O_3$ subscales. Cr coated Ni formed inner layer of $Cr_2O_3$ within almost pure NiO, which provided additional cation vacancies, thus increasing the mobility of Ni ions in this region. It is believed that this doping effect resulted in an increase in the observed oxidation rate compared with pure Ni and did not improve the oxidation resistance.

  • PDF

A Molecular Dynamics Study of the Stress Effect on Oxidation Behavior of Silicon Nanowires

  • Kim, Byeong-Hyeon;Kim, Gyu-Bong;Park, Mi-Na;Ma, U-Ru-Di;Lee, Gwang-Ryeol;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.499-499
    • /
    • 2011
  • Silicon nanowires (Si NWs) have been extensively studied for nanoelectronics owing to their unique optical and electrical properties different from those of bulk silicon. For the development of Si NW devices, better understanding of oxidation behavior in Si NWs would be an important issue. For example, it is widely known that atomic scale roughness at the dielectric (SiOx)/channel (Si) interface can significantly affect the device performance in the nano-scale devices. However, the oxidation process at the atomic-scale is still unknown because of its complexity. In the present work, we investigated the oxidation behavior of Si NW in atomic scale by simulating the dry oxidation process using a reactive molecular dynamics simulation technique. We focused on the residual stress evolution during oxidation to understand the stress effect on oxidation behavior of Si NWs having two different diameters, 5 nm and 10 nm. We calculated the charge distribution according to the oxidation time for 5 and 10 nm Si NWs. Judging from this data, it was observed that the surface oxide layer started to form before it is fully oxidized, i.e., the active diffusion of oxygen in the surface oxide layer. However, it is well-known that the oxide layer formation on the Si NWs results in a compressive stress on the surface which may retard the oxygen diffusion. We focused on the stress evolution of Si NWs during the oxidation process. Since the surface oxidation results in the volume expansion of the outer shell, it shows a compressive stress along the oxide layer. Interestingly, the stress for the 10 nm Si NW exhibits larger compressive stress than that of 5 nm Si NW. The difference of stress level between 5 an 10 anm Si NWs is approximately 1 or 2 GPa. Consequently, the diameter of Si NWs could be a significant factor to determine the self-limiting oxidation behavior of Si NWs when the diameter was very small.

  • PDF

Effect of SiC and WC additon on Oxidation Behavior of Spark-Plasma-Sintered ZrB2

  • Kim, Chang-Yeoul;Choi, Jae-Seok;Choi, Sung-Churl
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.455-462
    • /
    • 2019
  • ZrB2 ceramic and ZrB2 ceramic composites with the addition of SiC, WC, and SiC/WC are successfully synthesized by a spark plasma sintering method. During high-temperature oxidation, SiC additive form a SiO2 amorphous outer scale layer and SiC-deplete ZrO2 scale layer, which decrease the oxidation rate. WC addition forms WO3 during the oxidation process to result in a ZrO2/WO3 liquid sintering layer, which is known to improve the anti-oxidation effect. The addition of SiC and WC to ZrB2 reduces the oxygen effective diffusivity by one-fifth of that of ZrB2. The addition of both SiC and WC shows the formation of a SiO2 outer dense glass layer and ZrO2/WO3 layer so that the anti-oxidation effect is improved three times as much as that of ZrB2. Therefore, SiC- and WC-added ZrB2 has a lower two-order oxygen effective diffusivity than ZrB2; it improves the anti-oxidation performance 3 times as much as that of ZrB2.

Dry oxidation of Germanium through a capping layer

  • Jeong, Mun-Hwa;Kim, Dong-Jun;Yeo, In-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.143.1-143.1
    • /
    • 2016
  • Ge is a promising candidate to replace Si in MOSFET because of its superior carrier mobility, particular that of the hole. However Ge oxide is thermodynamically unstable. At elevated temperature, GeO is formed at the interface of Ge and GeO2, and its formation increases the interface defect density, degrading its device performance. In search for a method to surmount the problem, we investigated Ge oxidation through an inert capped oxide layer. For this work, we prepared low doped n-type Ge(100) wafer by removing native oxide and depositing a capping layer, and show that GeO2 interface can be successfully grown through the capping layer by thermal oxidation in a furnace. The thickness and quality of thus grown GeO2 interface was examined by ellipsometry, XPS, and AFM, along with I-V and C-V measurements performed at 100K to 300K. We will present the result of our investigation, and provide the discussion on the oxide growth rate, interface state density and electrical characteristics in comparison with other studies using the direct oxidation method.

  • PDF