• Title/Summary/Keyword: Oxic-Settling-Anaerobic (OSA)

Search Result 3, Processing Time 0.017 seconds

Evaluation of Excess Sludge Reduction in the OSA Process using Kinetic Parameter and Mass Balance (동역학계수 및 물질수지를 이용한 OSA공정의 잉여슬러지 감량능 평가)

  • Nam, Duck-Hyun;Jang, Hyung-Suk;Ha, Kuem-Ryul;Kim, Joon-Kyu;Ju, Jae-Young;Jung, In-Ho;Park, Chul-Hwi
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.530-538
    • /
    • 2009
  • The Oxic-Settling-Anaerobic (OSA) treatment process, a modified Conventional Activated Sludge (CAS) process, was developed for the purpose of sludge reduction. The insertion of a sludge holding tank into a sludge return line, an anaerobic reactor, forming an OSA process, may provide a cost-effective way of reducing excess sludge production during a process. The OSA process was evaluated for its sludge reduction ability by kinetic parameter and mass balance, with an observed excess sludge reduction of 63.5%, as $P_{X.VSS}$, compared with the conventional activated sludge process.

Estimation of Sludge Reduction and Nitrogen Removal Possibility using OSA Process (OSA 공정을 이용한 하수슬러지 감량화 및 질소제거 가능성 평가)

  • Joo, Jae-Young;Yoon, Su-Chul;Nam, Duck-Hyun;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.497-503
    • /
    • 2008
  • The Oxic-Settling-Anaerobic(OSA) process is a modified activated sludge processes for sludge reduction. It is evaluated that the sludge production in OSA process can decrease to 88% because of biomass decay and kinetic parameter($Y_H$ 0.237mgVSS/mgCOD, $b_H$ $0.195d^{-1}$) in anaerobic reactor, when compared with CAS process. However, it has problems caused by sludge reduction such as increase of nutrient loading. In case that the anoxic condition through the introduction of the intermittent aeration for the enhancement of nitrogen removal ability build up and enough rbCOD is suppled, maximum 88% of nitrogen is removed in the OSA process. If the OSA process optimizing the intermittent aeration cycle is applied to the separate sewage system with high rbCOD fraction, it can be converted to advanced process in terms of the sludge reduction and nitrogen removal, simultaneously.

Intracellular Concentrations of NAD(P), NAD(P)H, and ATP in a Simulated Oxic-settling-anaerobic (OSA) Process (OSA 공정의 세포 내 ATP, NAD(H), NADP(H) 농도)

  • Ventura, Jey-R Sabado;Nam, Ji-Hyun;Yang, Benqin;Na, Ri;Kil, Hyejin;Nam, Deok-Hyeon;Kang, Ki-Hoon;Jahng, Deokjin
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2015
  • In order to investigate why OSA (oxic-settling-anaerobic) process produces less sludge than CAS (conventional activated sludge) process, sequential cultivation through 1st aerobic-anaerobic-2nd aerobic conditions, were carried out. Then, the intracellular concentrations of adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD and NADH), and nicotinamide adenine dinucleotide phosphate (NADP and NADPH) were monitored for these three stages. Results showed that the concentrations of these energy substances rapidly decreased through time in both aerobic and anaerobic conditions but the anaerobic culture contained the lower energy level than aerobic culture. The 2nd aerobic culture that experienced anaerobic condition showed lower concentration of these energy substances than those of the 1st aerobic culture. Meanwhile, the anaerobic culture corresponding to the sludge holding stage of OSA was subjected to different soluble chemical oxygen demand (SCOD) levels, detention time, and temperature to evaluate the effects of these variations on the energy level difference between the 1st and 2nd aerobic stages. The lower the SCOD concentration, the longer detention time; and the higher temperature in the anaerobic stage tended to further reduce the intracellular level of the 2nd aerobic culture. On the average, the intracellular energy level of the anaerobic and 2nd aerobic stage were 57.73% and 39.12% of the 1st aerobic culture, respectively. These indicated that the insertion of an anaerobic stage between two aerobic stages could lower the intracellular energy levels, hence the lower the sludge in OSA than CAS process. Moreover, manipulation of the operating conditions of the intervening anaerobic stage can change intracellular energy levels thereby controlling sludge production.