• Title/Summary/Keyword: Ovotransferrin

Search Result 22, Processing Time 0.022 seconds

Oxalate Chelating Activity of Egg White Proteins and Their Hydrolysates

  • Holipitiyage Shyami Rashmiki, Holipitiya;Palihawadanege Iresha Lakmini, Fernando;Ethige Chathura Nishshanka, Rathnapala;Alakolange Gedara Achala Wimukthika, Alakolanga;Edirisinghe Dewage Nalaka Sandun, Abeyrathne;Ki-Chang, Nam
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.221-228
    • /
    • 2022
  • Major egg white proteins and their hydrolysates serve as functional food ingredients that have certain metal-chelating properties. Employing egg white proteins and their hydrolysates to scavenge dietary oxalates is anticipated to have beneficial effect in the prevention of kidney stones. The objective of this study was to determine the biogenic oxalate-chelating activity of ovalbumin, ovomucin, and ovotransferrin and their hydrolysates. To prepare oxalate extracts, 30 mL of 0.25 N HCl was added to separately to 0.5 g of dried spinach and starfruit powders followed by boiling for 15 min, and after cooling, the addition of a further 20 mL of 0.25 N HCl. Having prepared these extracts, ovalbumin, ovomucin, and ovotransferrin and their hydrolysates were separately mixed with oxalate extracts and incubated at 3℃ for 24 h. Following centrifugation, supernatants were analyzed by HPLC using a reverse-phase C18 column coupled with a diode array detector. We found that all assessed proteins and their hydrolysates showed biogenic oxalate-chelating activity against the oxalates of spinach. In contrast, however, only ovalbumin, ovalbumin-hydrolysate, and ovomucin showed chelating activity (57.10%±8.84%, 85.44%±5.30%, 73.20%±4.13%, respectively) against the oxalates of starfruit (P<0.05). Overall, hydrolyzed ovalbumin was identified as the most effective chelator of the oxalates both spinach and starfruit. In this study, we thus established that the assessed egg white proteins and their hydrolysates have oxalate-chelating activity in vitro, thereby indicating that these compounds have potential utility as nutraceuticals for the chelation of dietary oxalate. However, further research will be necessary to verify their oxalate-chelating activities against different fruits and vegetables and under specific in vivo conditions and against purified oxalate.

Effect of Irradiation on the Mixture of Egg White Proteins Responsible for Foaming Property

  • Liu, Xian De;Han, Rong Xiu;Jin, Dong-Il;Lee, Soo-Kee;Jo, Cheo-Run
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.521-526
    • /
    • 2009
  • Irradiation of egg white increased foaming ability significantly. To investigate the protein modification by irradiation responsible for the increase of foaming ability, 3 major egg white proteins were purchased and mixed (7.7 g/L ovalbumin, 1.8 g/L ovotransferrin, 0.5 g/L lysozyme) as a model system and irradiated at 0, 2.5, and 5 kGy. The different protein expressions were evaluated using 2-D electrophoresis and it was found that ovotransferrin was cleaved by irradiation and molecular weight and isoelectric point were changed. In addition, many uncharacterized proteins were found and it indicated that irradiation modified proteins randomly but mainly fragmentation was observed. Therefore, it can be concluded that protein fragmentation of 3 major egg white proteins responsible for foaming ability may be the main reason for the improvement of foaming ability.

Effect of Dietary Krill Meal Levels on the Cell Mediated Immunity in Intra-muscularly Croton Oil Injected Broiler Chicks (파두유를 주입한 육계병아리에서 사료중 크릴밀 수준이 세포성 면역에 미치는 영향)

  • Im, J.T.;Park, I.K.;Koh, T.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.599-610
    • /
    • 2007
  • Effect of dietary krill meal levels on the cellular immunity was studied in broiler chicks activated immune response. One day old male broiler chicks(Ross) were fed the experimental krill meal 0.0(basal), 0.5, 1.0 and 2.0% diets for 3wks. Blood TNF-α activity, ovotransferrin level and Con A induced proliferation of PBMC and splenocytes after 24 hr(21 d age) of the croton oil 10㎕ injection intra- musculary at the age of 20 days compared to the control olive oil. Krill meal diets did not affect growth performance of broiler chicks and plasma ovotransferrin levels but decreased significantly(p<0.0001) TNF-α like activity and proliferation of PBMC relative to krill meal 0.0% diet. And the proliferation of splenocytes were significantly(p<0.05) increased in birds fed krill meal 1.0% diet relative to krill meal 0.5 and 2.0% diets. The croton oil injection induced a significant(p<0.0001) increases in the TNF-α activity or the PBMC proliferation and enhanced circulating ovotransferrin levels relative to the olive oil. In birds injected with the croton oil the proliferation of PBMC was reduced linearly with the increase of dietary krill meal levels, and the proliferation of splenocytes was decreased in the krill meal 1.0 and 2.0% diets relative to olive oil. These results indicated that dietary krill meal changed the innate and cellular immunity in broiler chicks activated by the injection of croton oil.

Effect of Dietary Krill Meal Levels on Performance and Immune Response of Broiler Chicks Injected with Salmonella typhimurium Lipopolysaccharide (살모넬라 LPS를 주입한 육계병아리에 있어서 사료 중 크릴 밀 수준이 생산성과 면역반응에 미치는 영향)

  • Im, J.T.;Park, I.K.;Koh, T.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.225-238
    • /
    • 2007
  • In this study, the effects of dietary krill meal levels on cellular immunity in LPS-injected broiler chicks was evaluated. One day-old male broiler chicks(Ross) were fed on the experimental basal meal(0.0% krill meal), or diets containing 0.5%, 1.0% and 2.0% krill for 3 weeks, and the acute phase response was activated by intraperitoneally injection of Salmonella typhimurium lipopolysaccharide(LPS) 3 times at 9, 11, and 13 days of age. 1. Acute phase response induced a significant reduction in(p<0.05) daily weight gain and feed intake, and increases in liver and spleen weight. However, it was not affected by dietary krill meal levels. 2. The krill meal diets reduced TNF-α activity as compared to the basal diet after 24 hours (acute phase response) and 1 week(recovery from the acute phase response) following LPS injection (p<0.05). The acute phase response induced a significant increase(p<0.05) in TNF-α activity relative to the control in chicks fed on a basal diet, but this was also unaffected by dietary krill meal levels. 3. Acute phase response-mediated ovotransferrin levels(relative to what was measured in the control bird) were increased in birds fed on the basal, 1.0% and 2.0% krill diets, and were reduced in birds fed on the 0.5 % krill diet. 4. In LPS-injected chicks, 1.0% and 2.0% krill meal diets induced a significant reduction in(p<0.05) the Con A-induced proliferation of PBMC and splenocytes relative to what was observed in the chicks fed on a 0.5% krill diet, whereas the splenocytes proliferated in a linear fashion with the krill levels in the diets of the control birds. The results showed that the dietary levels of krill meal reduced TNF-α activity in the blood and also influenced blood ovotransferrin levels and the proliferation of PBMC and splenocytes, and krill meal is considered to be associated with both innate and cellular immunity in broiler chicks.

Changes in Immunological Factors Induced by H9N2 Avian Influenza Challenge in Broilers (저병원성 조류인플루엔자 감염에 따른 육계의 면역인자 변화)

  • Kim, Deok-Hwan;Kim, Kyu-Jik;Noh, Jin-Yong;Lee, Sun-Hak;Song, Chang-Seon;Park, Hae Kyoung;Nahm, Sang-Soep
    • Korean Journal of Poultry Science
    • /
    • v.47 no.4
    • /
    • pp.229-235
    • /
    • 2020
  • Avian influenza virus infection, one of the most important diseases recognized in the poultry industry, is known to cause changes in cytokine and serum protein levels. However, the normal ranges and/or age-dependent changes in important cytokines and serum proteins associated with influenza infection have not been fully elucidated. In this study, the levels of cytokines (interleukin-1β, interleukin-6, and interferon-γ) and serum proteins (vitamin D binding protein and ovotransferrin) were determined in 1-week- to 4-week-old broilers at 1-week intervals after challenge with a low pathogenic influenza virus. The results showed that the physiological levels of cytokines and serum proteins varied with aging during the 4 weeks. The levels of interleukin-1β and interleukin-6 increased from 20% to 35% after influenza infection compared to those in the negative control group, indicating that these cytokines may be used to monitor disease progression.

Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems

  • Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.547-557
    • /
    • 2016
  • This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use.

Current Trends in Lactoferrin Research and Development (락토페린의 최근 연구 개발 동향)

  • Ryu, Yeon-Kyung;Kim, Woan-Sub
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.19-28
    • /
    • 2009
  • Lactoferrin was first identified 60 years ago as a "red protein" in bovine milk. Lactoferrin, one of the transferrin family proteins, is an iron-binding glycoprotein found in milk and various mucosal secretions; it is also released from activated neutrophils. Human lactoferrin has a molecular weight of 82.4 kDa and is composed of 702 or 692 amino acid residues. Bovine lactoferrin has a molecular weight of 83.1 kDa and is composed of 689 amino acid residues. Both lactoferrin and transferrin have the ability to bind two $Fe^{3+}$ ions, together with two ${CO_3}^{2-}$ ions with extremely high affinity; these proteins also have the ability to release this iron at low pH levels. The polypeptide chain in lactoferrin is folded into two globular lobes, representing the N-terminal and C-terminal halves. Both lobes have similar folding and 40% sequence identity. This protein is capable of multiple functions as described in various review papers, including antimicrobial, antiviral, antiinflammatory, anticancer, antioxidant, and cell growth-promoting activities. Lactoferrin also exhibits immunomodulating effects and plays an active role in the regulation of myelopoiesis and the inhibition of bacterial translocation.

  • PDF

Effects of heat stress on growth performance, selected physiological and immunological parameters, caecal microflora, and meat quality in two broiler strains

  • Awad, Elmutaz Atta;Najaa, Muhamad;Zulaikha, Zainool Abidin;Zulkifli, Idrus;Soleimani, Abdoreza Farjam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.778-787
    • /
    • 2020
  • Objective: This study was conducted to investigate the effects of normal and heat stress environments on growth performance and, selected physiological and immunological parameters, caecal microflora and meat quality in Cobb 500 and Ross 308 broilers. Methods: One-hundred-and-twenty male broiler chicks from each strain (one-day-old) were randomly assigned in groups of 10 to 24 battery cages. Ambient temperature on day (d) 1 was set at 32℃ and gradually reduced to 23℃ on d 21. From d 22 to 35, equal numbers of birds from each strain were exposed to a temperature of either 23℃ throughout (normal) or 34℃ for 6 h (heat stress). Results: From d 1 to 21, strain had no effect (p>0.05) on feed intake (FI), body weight gain (BWG), or the feed conversion ratio (FCR). Except for creatine kinase, no strain×temperature interactions were observed for all the parameters measured. Regardless of strain, heat exposure significantly (p<0.05) reduced FI and BWG (d 22 to 35 and 1 to 35), immunoglobulin Y (IgY) and IgM, while increased FCR (d 22 to 35 and 1 to 35) and serum levels of glucose and acute phase proteins (APPs). Regardless of temperature, the Ross 308 birds had significantly (p<0.05) lower IgA and higher finisher and overall BWG compared to Cobb 500. Conclusion: The present study suggests that the detrimental effects of heat stress are consistent across commercial broiler strains because there were no significant strain×temperature interactions for growth performance, serum APPs and immunoglobulin responses, meat quality, and ceacal microflora population.

Characteristics of Seven Japanese Native Chicken Breeds Based on Egg White Protein Polymorphisms

  • Myint, Si Lhyam;Shimogiri, Takeshi;Kawabe, Kotaro;Hashiguchi, Tsutomu;Maeda, Yoshizane;Okamoto, Shin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1137-1144
    • /
    • 2010
  • In this study, to examine genetic variability within a breed and genetic relationships between populations/breeds, we genotyped 606 birds from seven Japanese native chicken breeds at seven polymorphic loci of egg white proteins and compared those with Asian native chicken populations and commercial breeds. Genotyping of the Japanese native breeds showed that ovalbumin, two ovoglobulins and ovotransferrin were polymorphic, but ovomacroglobulin, ovoflavoprotein and lysozyme were monomorphic. The proportion of polymorphic loci ($P_{poly}$) and average heterozygosity ($\bar{H}$) within a population ranged from 0.286 to 0.429 and from 0.085 to 0.158, respectively. The coefficient of gene differentiation ($G_{ST}$) was 0.250 in the Japanese native chicken breeds. This estimate was higher than that of Asian native chicken populations ($G_{ST}$ = 0.083) and of commercial breeds ($G_{ST}$ = 0.169). Dendrogram and PCA plot showed that Satsuma-dori, Jitokko, Amakusa-daio and Hinai-dori were closely related to each other and grouped into Asian native chickens and that Tsushima-jidori, Nagoya and Chan (Utaichan) were ramified far from other Japanese native chicken breeds. The egg white protein polymorphisms demonstrated that the population differentiation of the seven Japanese native chicken breeds was relatively large.

Acute phase protein mRNA expressions and enhancement of antioxidant defense system in Black-meated Silkie Fowls supplemented with clove (Eugenia caryophyllus) extracts under the influence of chronic heat stress

  • Bello, Alhassan Usman;Sulaiman, Jelilat Aderonke;Aliyu, Madagu Samaila
    • Journal of Animal Science and Technology
    • /
    • v.58 no.11
    • /
    • pp.39.1-39.12
    • /
    • 2016
  • Background: The current study investigates the anti-stress effects of clove (Eugenia caryophyllus) extracts (0, 200, 400, and 600 mg/kg) on serum antioxidant biomarkers, immune response, immunological organ growth index, and expression levels of acute phase proteins (APPs); ovotransferrin (OVT), ceruloplasmin (CP), ceruloplasmin (AGP), C-reactive protein (CRP), and serum amyloid-A (SAA) mRNA in the immunological organs of 63-d-old male black-meated Silkie fowls subjected to 21 d chronic heat stress at $35{\pm}2^{\circ}C$. Results: The results demonstrated that clove extract supplementation in the diet of Silkie fowls subjected to elevated temperature (ET) improve growth performance, immune responses, and suppressed the activities of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and thioredoxin reductase (TXNRD); reduced serum malonaldehyde (MDA) and glutathione (GSH) concentrations when compared with fowls raised under thermoneutral condition (TC). Upon chronic heat stress and supplementation of clove extracts, the Silkie fowls showed a linear increase in GSH-Px, SOD, CAT, and TXNRD activities (P = 0.01) compared with fowls fed diets without clove extract. ET decreased (P < 0.05) the growth index of the liver, spleen, bursa of Fabricius and thymus. However, the growth index of the liver, spleen, bursa of Fabricius and thymus increased significantly (P < 0.05) which corresponded to an increase in clove supplemented levels. The expression of OVT, CP, AGP, CRP, and SAA mRNA in the liver, spleen, bursa of Fabricius and thymus were elevated (P < 0.01) by ET compared with those maintained at TC. Nevertheless, clove mitigates heat stress-induced overexpression of OVT, CP, AGP, CRP and SAA mRNA in the immune organs of fowls fed 400 mg clove/kg compared to other groups. Conclusions: The results showed that clove extracts supplementation decreased oxidative stress in the heat-stressed black-meated fowls by alleviating negative effects of heat stress via improvement in growth performance, antioxidant defense mechanisms, immunity, and regulate the expression of acute phase genes in the liver and immunological organs.