• Title/Summary/Keyword: Overturning Stability

Search Result 76, Processing Time 0.021 seconds

Evaluation of Stability of Quay Wall Considering Overtopping of Tsunami (지진해일파의 월파를 고려한 해안안벽의 안정성평가)

  • Lee, Kwang-Ho;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.31-45
    • /
    • 2012
  • This study was conducted to estimate the stability of a quay wall in case of wave overtopping under the combined action of an earthquake and tsunami using limit equilibrium method. The tsunami force was calculated by using a numerical program called TWOPM-3D (3-D one-field Model for immiscible TWO-Phase flows). Especially, the wave force acting behind the quay wall after a tsunami wave overtopping was estimated by treating back fill as a permeable material. The stability of the quay wall was assessed for both the sliding and overturning modes under passive and active conditions. The variation in the stability of the quay wall with time was determined by parametric studies, including those for the tsunami wave height, seismic acceleration coefficient, internal friction angle of the soil, wall friction angle, and pore water pressure ratio. When the earthquake and tsunami were considered simultaneously, the tsunami induced wave overtopping increased the stability of the quay wall under the passive condition, but in the active condition, the safety factors decreased.

Assessment of physical condition of old large Chionanthus retusus(Chinese Fringe Tree) using structural stability analysis (천연기념물 이팝나무 노거수 구조안정성 진단을 통한 물리적 생육상태 평가)

  • SON Jiwon;SHIN Jinho
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.118-130
    • /
    • 2023
  • Decay or large cavities inside trees are the main causes of trees overturning and broken branches, and structurally weakened trees are more vulnerable to strong winds and heavy snowfall. Recently, as strong winds and typhoons increase due to climate change, the damage to human life and property due to trees overturning continues to increase, and cultural assets are in a similar situation. In particular, old big trees are structurally vulnerable to external shocks such as strong winds and heavy snowfall. This study was aimed at providing a scientific basis for preventive protection measures by conducting a structural stability diagnosis of seven retusa fringe trees designated as natural monuments. For the structural stability diagnosis, tree risk assessment and internal tree defect measurements were performed. As a result of the tree risk assessment, the Retusa Fringe Trees in Sinjeon-ri, Yangsan and Gwangyangeupsu had the highest risk of broken branches due to weak branch attachment strength. As a result of the diagnosis of internal defects of cross sections of measured trees, there were suspected cavities or severe decay in all except two trees of the population of Retusa Fringe Trees in Pyeongji-ri. Natural disasters due to climate change are increasing, and the scale is getting larger, so it is very important to preemptively manage large old trees through scientific structural safety diagnosis to manage trees that are vulnerable to environmental changes.

Failure Probability Analysis of Concrete Cofferdam Considering the Overflow in Flood Season (홍수시 월류를 고려한 콘크리트 가물막이댐의 파괴확률 산정)

  • Hong, Won Pyo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.30-38
    • /
    • 2020
  • In order to construct a dam, the diversion facility such as cofferdam and a diversion tunnel should be installed in advance. And size of a cofferdam depends on type of a main dam. According to the Korea Dam Design Standard, if the main dam is a concrete dam, design flood of the cofferdam is 1~2 years flood frequency. This means that overflow of the cofferdam occurs one time for 1 or 2 years, therefore, stability of the cofferdam should be secured against any overflow problem. In this study, failure probability analysis for the concrete cofferdam is performed considering the overflow. First of all, limit state function of the concrete cofferdam is defined for overturning, sliding and base pressure, and upstream water levels are set as El. 501 m, El. 503 m, El. 505 m, El. 507 m. Also, after literature investigation research, probabilistic characteristics of various random variables are determined, the failure probability of the concrete cofferdam is calculated using the Monte Carlo Simulation. As a result of the analysis, when the upstream water level rises, it means overflow, the failure probability increases rapidly. In particular, the failure probability is largest in case of flood loading condition. It is considered that the high upstream water level causes increase of the upstream water pressure and the uplift pressure on the foundation. In addition, among the overturning, the sliding and the base pressure, the overturing is the major cause for the cofferdam failure considering the overflow.

Stability and parameters influence study of fully balanced hoist vertical ship lift

  • Cheng, Xionghao;Shi, Duanwei;Li, Hongxiang;Xia, Re;Zhang, Yang;Zhou, Ji
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.583-594
    • /
    • 2018
  • A theoretical formulation based on the linearized potential theory, the Descartes' rule and the extremum optimization method is presented to calculate the critical distance of lifting points of the fully balanced hoist vertical ship lift, and to study pitching stability of the ship lift. The overturning torque of the ship chamber is proposed based on the Housner theory. A seven-free-degree dynamic model of the ship lift based on the Lagrange equation of the second kind is then established, including the ship chamber, the wire rope, the gravity counterweights and the liquid in the ship chamber. Subsequently, an eigenvalue equation is obtained with the coefficient matrix of the dynamic equations, and a key coefficient is analyzed by innovative use of the minimum optimization method for a stability criterion. Also, an extensive influence of the structural parameters contains the gravity counterweight wire rope stiffness, synchronous shaft stiffness, lifting height and hoists radius on the critical distance of lifting points is numerically analyzed. With the Runge-Kutta method, the four primary dynamical responses of the ship lift are investigated to demonstrate the accuracy/reliability of the result from the theoretical formulation. It is revealed that the critical distance of lifting points decreases with increasing the synchronous shaft stiffness, while increases with rising the other three structural parameters. Moreover, the theoretical formulation is more applicable than the previous criterions to design the layout of the fully balanced hoist vertical ship lift for the ensuring of the stability.

A Study on Stability Estimation of a Orchard Vehicle using Multi-Body Dynamic and Finite Element Analysis (다물체 동역학 및 유한요소 해석을 통한 과수원용 작업차량 안정성 평가에 관한 연구)

  • Han, Chang-Woo;Son, Jae-Hwan;Park, Kee-Jin;Jang, Eun-Sil;Woo, Seung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4142-4148
    • /
    • 2013
  • Because of effective fruit growing and management in the slope land, the use of orchard vehicle with lifting utilities has been increased. For this reason the study on the stability of that vehicle for worker's safety is needed. This study is investigated on the stability estimation of orchard vehicle with four wheels and dual rectangular-type lifting utilities which can be moved on the dirt sloping load. Through the multi-body dynamics analysis on the vehicle mechanism, overturning angles of 19.2 and $34.6^{\circ}$ in the right-left and front-rear direction can be calculated. It is determined tractive resistances and required powers of the wheels. And through the finite element analysis on the frame of lifting utility its maximum von-Mises stress is 146 MPa and it is structural stable. Therefore it is known that the orchard vehicle with wheels and lifting utilities has static and dynamic stability.

Rocking response of unanchored rectangular rigid bodies to simulated earthquakes

  • Aydin, Kamil
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.343-362
    • /
    • 2004
  • Rocking response of rigid bodies with rectangular footprint, freely standing on horizontal rigid plane is studied analytically. Bodies are subjected to simulated single component of horizontal earthquakes. The effect of baseline correction, applied to simulated excitations, on the rocking response is first examined. The sensitiveness of rocking motion to the details of earthquakes and geometric properties of rigid bodies is investigated. Due to the demonstrated sensitivity of rocking response to these factors, prediction of rocking stability must be made in the framework of probability theory. Therefore, using a large number of simulated earthquakes, the effects of duration and shape of intensity function of simulated earthquakes on overturning probability of rigid bodies are studied. In the case when a rigid body is placed on any floor of a building, the corresponding probability is compared to that of a body placed on the ground. For this purpose, several shear frames are employed. Finally, the viability of the energy balance equation, which was introduced by Housner in 1963 and widely used by nuclear power industry to estimate the rocking stability of bodies, is evaluated. It is found that the equation is robust. Examples are also given to show how this equation can be used.

Minimization of Tilting Moment of Co-Rotating Scroll Compressor by Design of Back Pressure Chamber (배압실의 설계를 통한 상호회전 스크롤 압축기의 전복 모멘트 최소화)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1305-1313
    • /
    • 2000
  • In a co-rotating scroll compressor, both scrolls rotate on their fixed axes contrary to the conventional orbiting type scroll machine. This implies fixed locations and directions of the gas pressure force and sealing force. Because the tilting moment is mainly caused by interplay between the resultant force of above forces and bearing reaction force, the variation during one cycle is relatively small. Under real operation, this moment is balanced by the restoring moment created by the reaction between the baseplate and thrust bearing or between the scroll tip and baseplate. If these reactions become too large, greater torque is required due to increased friction in addition to the wear of mating parts. Consequently, appropriate study and minimization of tilting moment is important in the design of scroll machines. In this study, taking into account of the small variation of tilting moment during one cycle, we minimize the moment and thrust bearing reaction force by a properly designed back pressure chamber. As a result, for both the driving and driven scrolls, the tilting moment and the reaction force of thrust bearing can be minimized. And the stability is improved for all cases.

Stability Evaluation on Aerodynamics of High Speed Railway Train (공력에 의한 HEMU-400x 고속열차의 주행안정성 평가)

  • Choi, J.H.;Park, T.W.;Sim, K.S.;Kwak, M.H.;Lee, D.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.244-252
    • /
    • 2012
  • Recently, the speed of a train has been increased. So the trains are being exposed to wind more severely than before. Because of the operation of high speed trains and lightweight of the train, risks of train derailment have being increased. In this study, aerodynamic effects of a newly designed high speed train, HEMU-400x, are evaluated. For aerodynamic effect evaluation, analysis method is selected by examining the safety standards for high speed train. The condition of aerodynamic effects is selected by adverse effect conditions. In order to calculate $C_s$ coefficients, numerical analysis is conducted. Using $C_s$ coefficients, the side force is calculated. Through dynamics analysis, derailment and wheel unloading are obtained. Using these results, derailment evaluation is performed.

Nonlinear Analysis of Precast Large Panel Structures Considering the Inelastic Properties of Horizontal Joints (수평접합부의 비탄성 특성을 고려한 프리캐스트 대형판넬 구조물의 비선형 해석에 관한 연구)

  • 정일영;최완철;송진규;강해관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.45-52
    • /
    • 1995
  • The stability and integrity of precast large panel structures are analyzed with nonlinear mathematical model considering the inelastic properties of horizontal joints. In this research, an analysis for cyclic loading test was carried out by the macro model that idealized the horizontal joints as inelastic-nonlinear spring systems. As a results, the strain hardening ratio of shear slip element was estimated as about 0.05%- 0.2% of initial shear stiffness. And under lateral load, the rocking motion due ti overturning moment was dominant rather than shear slip motion in the behavior of precast structures.

  • PDF

A Comparison of the Wind Resistance Characteristic of a Container Crane According to the Increase to the Lifting Capacity (권상용량 증가에 따른 컨테이너 크레인의 내풍특성 비교)

  • Lee, Seong-Wook;Kim, Hyung-Hoon;Han, Dong-Seop;Han, Geun-Jo;Kim, Tae-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.204-209
    • /
    • 2007
  • This study was carried out to analyze the effect of wind load on the structural stability of a container crane according to the increase of the lifting capacity using wind tunnel test and provided a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load at 75m/s wind velocity is applied on a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary-layer wind tunnel with $11.52m^{2}$ cross-section area. Each directional drag and overturning moment coefficients were investigated.

  • PDF