• Title/Summary/Keyword: Overset grid

Search Result 57, Processing Time 0.021 seconds

OVERSET-GRID SIMULATION TECHNIQUE FOR ANALYSIS OF 2-DOF SHIP MOTIONS IN WAVES (파랑 중 선박의 자유도 운동해석을 위한 중첩격자 기반의 수치해법)

  • Heo, J.K.;Ock, Y.B.;Park, J.C.;Jeong, S.M.;Akimoto, H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.20-26
    • /
    • 2015
  • This paper introduces a computational method for analysis of the 6-DOF motions of a ship in waves using an overset grid technique which consists of inner and outer domains for representing body motions and numerical wave tank, respectively. High order interpolation scheme is employed to increase numerical accuracy over the interface where physical values, such as velocities and pressure, interact between the inner and outer domains. The numerical schemes and algorithm are addressed in the present paper. An application to motion of KCS container carrier in head waves is presented, and the comparison of responses on heave and pitch motions shows good agreement with those of model tests.

Numerical Analysis on Separation Dynamics of Multi-stage Rocket System Using Parallelized Chimera Grid Scheme (병렬화된 Chimera 격자 기법을 이용한 다단 로켓의 단분리 운동 해석)

  • Ko Soon-Heum;Choi Seongjin;Kim Chongam;Rho Oh-Hyun;Park Jeong-joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.47-52
    • /
    • 2002
  • The supersonic flow around multi-stage rocket system is analyzed using 3-D compressible unsteady flow solver. A Chimera overset grid technique is used for the calculation of present configuration and grid around the core rocket is composed of 3 zones to represent fins in the core rocket. Flow solver is parallelized to reduce the computation time, and an efficient parallelization algorithm for Chimera grid technique is proposed. AUSMPW+ scheme is used for the spatial discretization and LU-SGS for the time integration. The flow field around multi-stage rocket was analyzed using this developed solver, and the results were compared with that of a sequential solver The speed-up ratio and the efficiency were measured in several processors. As a result, the computing speed with 12 processors was about 10 times faster than that of a sequential solver. Developed flow solver is used to predict the trajectory of booster in separation stage. From the analyses, booster collides against core rocket in free separation case. So, additional jettisoning forces and moments needed for a safe separation are examined.

  • PDF

Added Resistance and 2DOF Motion Analysis of KVLCC2 in Regular Head Waves using Dynamic Overset Scheme (동적 중첩격자 기법을 이용한 KVLCC2의 파랑중 부가저항 및 2자유도 운동 해석)

  • Kim, Yoo-Chul;Kim, Yoonsik;Kim, Jin;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.385-393
    • /
    • 2018
  • In this study, the analysis of 2DOF (2 Degree Of Freedom) motion and added resistance of a ship in regular head waves is carried out using RANS (Reynolds Averaged Navier-Stokes) approach. In order to improve the accuracy for large amplitude motions, the dynamic overset scheme is adopted. One of the dynamic overset schemes, Suggar++ is applied to WAVIS which is the in-house RANS code of KRISO (Korea Research Institute of Ships and Ocean Engineering). The grid convergence test is carried out using the present scheme before the analysis. The target hull form is KRISO VLCC tanker (KVLCC2) and 13 wave length conditions are applied. The present scheme shows the improved results comparing with the results of WAVIS2 in the non-inertial reference frame. The dynamic overset scheme is confirmed to give the comparatively better results for the large amplitude motion cases than the non-inertial frame based scheme.

Numerical Analysis of Ship Motions in Beam Sea Using Unsteady RANS and Overset Grid Methods (비정상 RANS 법과 중첩격자계를 이용한 횡파중 선박운동 수치해석)

  • Park, Il-Ryong;Hosseini, Seyed Hamid Sadat;Stern, Frederick
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.109-123
    • /
    • 2008
  • The present paper presents the CFD result for a beam wave test case. An ONR tumblehome ship model with bilge keels is used. The beam wave test is for zero forward speed and roll and heave 2DOF with wave slope $a_k=0.156$ and wavelength ${\lambda}=1.12L_{PP}$, with $L_{PP}$ the ship length. The problems is solved numerically with an unsteady Reynolds averaged Navier-Stokes approach. The free surface flow is computed using a single-phase level-set method and the motions in each time step are integrated using a predictor-corrector iteration approach which uses dynamic overset grids moving with relative ship motion. The predicted CFD results for motions and forces are compared with experimental data, showing a reasonable agreement.

전진익 소형기의 전산유동해석

  • Choi, Seong-Wook;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • Flow computations around forward sweep wing small aircraft have been conducted in this study. The main-wing of the forward-wing small aircraft is composed of two planforms: the inboard wing section with backward sweep angle which is known as strake and the outboard wing section with forward sweep angle. The geometrical discontinuity or kink generated by the combination of these two different planforms requires detailed flow analysis around wing. Four different solvers were used to calculate aerodynamic data and the accuracy of each method is examined. For the convenience of grid generation over the aircraft geometry, the overset grid method was applied. Through this calculation, the basic aerodynamic data of the forward-wing aircraft were provided and the aerodynamic characteristics of the wing is expounded.

  • PDF

Unsteady Flow Simulation of the Smart UAV Proprotor (스마트무인기 프롭로터 비정상 유동해석)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.415-421
    • /
    • 2006
  • The unsteady flow calculation around the proprotor of Smart UAV was conducted. Using the flight scenario of SUAV which composed of hover, transition, and airplane mode, the aerodynamic analysis of proprotor were performed for the variation of collective pitch, rpm, forward speed, and tilt angle. The unsteady compressible Navier-Stokes equations were used for the calculation and the dynamic overset grid technique was applied for the rotating proprotor. The aerodynamic performance of proprotor calculated in this way were validated by comparing with the performance data obtained from the blade element momentum method.

  • PDF

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW ANALYSIS (이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung M. S.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.135-139
    • /
    • 2005
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoil including relative motion. Validation were made by comparing the predicted results with those of experiments or other researcher's numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

  • PDF

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW SIMULATION WITH RELATIVE MOTION (상대운동이 있는 이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung Mun-Seung;Kwon Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.1-7
    • /
    • 2006
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect ratio quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoils involving relative motion. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

Essential Computational Tools for High-Fidelity Aerodynamic Simulation and Design (고 정밀 항공우주 유동해석 및 설계를 위한 공력계산 툴)

  • Kim, Chong-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.33-36
    • /
    • 2006
  • As the computing environment is rapidly improved, the interests of CFD are gradually focused on large-scale computation over complex geometry. Keeping pace with the trend, essential computational tools to obtain solutions of complex aerospace flow analysis and design problems are examined. An accurate and efficient flow analysis and design codes for large-scale aerospace problem are presented in this work. With regard to original numerical schemes for flow analysis, high-fidelity flux schemes such as RoeM, AUSMPW+ and higher order interpolation schemes such as MLP (Multi-dimensional Limiting Process) are presented. Concerning the grid representation method, a general-purpose basis code which can handle multi-block system and overset grid system simultaneously is constructed. In respect to design optimization, the importance of turbulent sensitivity is investigated. And design tools to predict highly turbulent flows and its sensitivity accurately by fully differentiating turbulent transport equations are presented. Especially, a new sensitivity analysis treatment and geometric representation method to resolve the basic flow characteristics are presented. Exploiting these tools, the capability of the proposed approach to handle complex aerospace simulation and design problems is tested by computing several flow analysis and design problems.

  • PDF