• 제목/요약/키워드: Overload prediction

검색결과 49건 처리시간 0.029초

단일 과대 하중에 의한 균열 성장 지연 거동 예측 (Prediction of Crack Growth Retardation Behavior by Single Overload)

  • 송삼흥;최진호;김기석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.928-932
    • /
    • 1996
  • Single overload fatigue tests with overload sizes ranging from 50% and 100% have been performed to investing ate the fatigue crack growth retardation behavior. A modified and experimental method of Willenborg's model for prediction of crack growth retardation behavior has been developed, based on evaluations of equivalent plastic zone size (EPZS) changing its size along the overload plastic zone boundary. The minimum crack growth rates of each overload size are linearly decreased with overload size increasing, but fatigue lives extended by single overload are increasing much more unlike the crack growth rates. Comparisons of crack growth behavior predicted by EPZS model and Willenborg model have shown that the EPZS model accounts for overload effects better than Willenborg model. These effects include delayed retardation, large retardation region, minimum crack growth rate, and the increase rate of crack growth rate in the region crack growth rate recovered.

  • PDF

데이터 스트림 환경에서 데이터 완전도 보장을 위한 과부하 예측 부하 분산 기법 (Load balancing method of overload prediction for guaranteeing the data completeness in data stream)

  • 김영기;신숭선;백성하;이동욱;김경배;배해영
    • 한국멀티미디어학회논문지
    • /
    • 제12권9호
    • /
    • pp.1242-1251
    • /
    • 2009
  • 유비쿼터스 환경에서 데이터 스트림 관리 시스템(Data Stream Management System: DSMS)은 수많은 센서로부터 생성되는 대량의 데이터 스트림을 처리한다. 기존의 시스템은 처리 능력 이상의 데이터 스트림이 입력되면 데이터의 일부를 제거하여 적정 부하를 유지하는 부하 제한 기법(Load Shedding)을 사용한다. 부하 제한 기법은 입력되는 데이터의 일부를 의도적으로 손실하여 데이터 완전도(Data Completeness)가 감소하기 때문에 처리 결과의 신뢰도 또한 감소한다. 따라서 본 논문에서는 시스템 처리 능력 이상의 데이터 스트림 입력 시 데이터 완전도 보장을 위한 과부하 예측 부하 분산 기법을 제안한다. 제안 기법은 데이터 손실이 예상되는 부하 시점을 미리 예측하고 예측된 부하 시점에 도달 시 부하를 분산하여 데이터 손실을 감소시킨다. 본 논문에서는 기존의 부하 제한 기법과의 비교 실험을 통해 제안 기법의 성능을 평가한다.

  • PDF

Improvement of prediction methods of power increase in regular head waves using calm-water and resistance tests in waves

  • Chun, Ho-Hwan;Lee, Cheol-Min;Lee, Inwon;Choi, Jung-Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.278-291
    • /
    • 2021
  • This paper applies load variation method to predict speed-power-rpm relationship along with propulsive performances in regular head waves, and to derive overload factors (ITTC, 2018). 'Calm-water tests' and 'resistance test in waves' are used. The modified overload factors are proposed taking non-linearity into consideration, and applied to the direct powering, and resistance and thrust identity method. These indirect methods are evaluated through comparing the speed-power-rpm relationships with those obtained from the resistance and self-propulsion tests in calm water and in waves. The objective ship is KVLCC2. The load variation method predicts well the speed-power-rpm relationship and propulsion performances in waves. The direct powering method with modified overload factors also predicts well. The resistance and thrust identity method with modified overload factor predicts with a little difference. The direct powering method with overload factors predicts with a relatively larger difference.

협동로봇의 건전성 관리를 위한 머신러닝 알고리즘의 비교 분석 (Comparative Analysis of Machine Learning Algorithms for Healthy Management of Collaborative Robots)

  • 김재은;장길상;임국화
    • 대한안전경영과학회지
    • /
    • 제23권4호
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.

혼합모드 단일과대하중 하에서 피로균열 전파거동의 예측 (Prediction of Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload)

  • 이정무;송삼홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.359-364
    • /
    • 2004
  • In this study, experiments were tried on the mixed-mode I+II single overloading model which changes the loading mode of overload and fatigue load. Aspects of deformation field in front of the crack which is formed by mixed-mode I+II single overloading were experimentally studied. Then the shape and size of mixed-mode plastic zone were approximately calculated. The propagation behavior of fatigue crack was examined under the test conditions combined by changing the loading mode. The behavior of fatigue cracks were greatly affected by shapes of plastic deformation field and applying mode of fatigue load. Accuracy of prediction and evaluation for fatigue life may be improved by considering all aspects of deformation and behavior of fatigue cracks.

  • PDF

Improvement to Crack Retardation Models Using ″Interactive Zone Concept″

  • Lee, Ouk-Sub;Chen, Zhi-Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.72-77
    • /
    • 2002
  • The load interaction effect can be best illustrated by the phenomenon of overload retardation. Some prediction methods for retardation are reviewed and the problems discussed in the present paper. The so-called under-load effect much of the retardation disappears if a very low level minimum stress follows the overload, is also of importance for a prediction model to work properly under random load spectrum. The concept of Interactive Zone (IZ) fully considering reversed plasticity during unloading was discussed. This IZ concept can be combined with existing models to derive some improved models that can naturally take account of the under-load effect. Some simulations by IZ improved models for test under complex load sequences including multiple overloads and both over/under loads are compared with test results. It is seen that the improvement by IZ concept greatly enhanced the ability of existing models to accommodate complex load interaction effects.

Comparative study on the prediction of speed-power-rpm of the KVLCC2 in regular head waves using model tests

  • Yu, Jin-Won;Lee, Cheol-Min;Seo, Jin-Hyeok;Chun, Ho Hwan;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.24-34
    • /
    • 2021
  • This paper predicts the speed-power-rpm relationship in regular head waves using various indirect methods: load variation, direct powering, resistance and thrust identity, torque and revolution, thrust and revolution, and Taylor expansion methods. The subject ship is KVLCC2. The wave conditions are the regular head waves of λ/LPP = 0.6 and 1.0 with three wave steepness ratios at three ship speeds of 13.5, 14.5 and 15.5 knots (design speed). In the case of λ/LPP = 0.6 at design speed, two more wave steepness ratios have been taken into consideration. The indirect methods have been evaluated through comparing the speed-power-rpm relationships with those obtained from the resistance and self-propulsion tests in calm water and in waves. The load variation method has been applied to predict propulsive performances in waves, and to derive overload factors (ITTC, 2018). The overload factors have been applied to obtain propulsive efficiency and propeller revolution. The thrust and revolution method (ITTC, 2014) has been modified.

점용접시편의 극한하중과 피로특성에 관한 실험적 고찰 (An Experimental Investigation of Limit Loads and Fatigue Properties of Spot Welded Specimens)

  • 이형일;김남호;이태수
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.38-51
    • /
    • 2000
  • The study on the mechanical behavior of a spot-welded specimen is largely divided into the quasi-static overload failure analysis and the fatigue failure prediction. The main issue in an overload analysis is to examine the critical loads, thereby providing a generalized overload failure criterion. As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. In this study, we first present the limit loads of 4 representative types of single spot-welded specimens in terms of the base metal yield strength and specimen geometries. Recasting the load vs. fatigue life relationships experimentally, obtained here, we then predict the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key, role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot.

단일과대하중하에서 피로균열진전지연거동 및 지연수명의 확률론적 해석 (A Stochastic Analysis for Crack Growth Retardation Behavior and Prediction of Retardation Cycle Under Single Overload)

  • 심동석;김정규
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1164-1172
    • /
    • 1999
  • In this study, to investigate the fatigue crack retardation behavior and the variability of retardation cycles, fatigue crack growth tests were conducted on 7075-T6 aluminum alloy under single tensile overload. A retardation coefficient, D was introduced to describe fatigue crack retardation behavior and a random variable, Z to describe the variability of fatigue crack growth. The retardation coefficient was separately formulated according to retardation behavior which is composed of delayed retardation part and retardation part. The random variable, Z was evaluated from experimental data which was obtained from fatigue crack growth tests under constant amplitude load. Using these variables, a probabilistic model was developed on the basis of the modified Forman's equation, and retardation behavior and cycles were predicted under certain overload condition. The predicted retardation curve well agrees with the trend of experimental crack retardation behavior. And this model well predicts the scatter of experimental retardation cycles.

7075-T735 Al 합금의 피로균열 진전속도와 정류거동에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate and Arrest Behavior in 7075-T735 Al Alloy)

  • 오세욱;강상훈;허정원;김태형
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.131-139
    • /
    • 1992
  • The understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading is very important for life prediction of the air travel structures. Particularly, the retardation and arrest behavior of fatigue crack propagation by single tension overloading is essential to the understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading. Numerous studies of the retardation behavior have been performed, however investigations of the arrest behavior have not been enough yet. As for the arrest behavior, Willenborg had reported that the overload shut-off ratio $[R_{so}=(K_{OL})/K_{max})_{crack arrest}]$ had been the material constant, but recently several investigators have reported that the overload shut-off ratio depends upon the stress ratio. In this study, authors have investigated the effect of stress ratio on the threshold overload shut-off ratio to generate arrest of fatigue crack growth in high tensile aluminum alloy 7075-T735 which have used in material for air travel structures, It has been $-0.4\leqqR\leqq0.4$ till now, the region of stress ratio investigated. The threshold overload shut-off ratio has decreased as stress ratio has increased in overall region of -$-0.4\leqqR\leqq0.4$ and the linearity has been seen in this material. Moreover, the experimental equation between $R_{so}$ and R has been made; The relation has been $R_{so}=-R+2.6$.

  • PDF