• Title/Summary/Keyword: Overground Walking

Search Result 6, Processing Time 0.022 seconds

The Comparison of Overground Walking and Treadmill Walking According to the Walking Speed: Motion Analysis and Energy Consumption (보행속도에 따른 지면보행과 Treadmill 보행의 비교: 운동분석 및 에너지 소모)

  • Sohn, R.H.;Choi, H.S.;Son, J.S.;Hwang, S.J.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.226-232
    • /
    • 2009
  • In this study, treadmill walking and overground walking were compared at the same condition based on kinematics and energy expenditures(EE). In addition, we compared the actual energy expenditure and calculated EE by treadmill. The kinematics of treadmill and overground walking were very similar. The values at each joint were significantly different(P<0.05), but magnitude of the difference was generally less than 4$^{\circ}$. In the EE using cardiopulmonary exercise, EE of treadmill walking was significantly greater when measured on the overground. It seemed to be the increased stress during the gait by the continuous movement of the belt. As the velocity increased, there was significant difference between actual EE and calculated EE by treadmill due to EE curve increasing exponentially. Therefore the further study would be required to find the correlation of the two methods and calibrate the values from them.

The Effect of Gait Training of Progressive Increasing in Body Weight Support and Gait Speed on Stroke Patients (점진적 체중지지와 보행속도 증가 훈련이 뇌졸중 환자의 보행에 미치는 효과)

  • Kim, Sung-Hoon;Choi, Jong-Duk
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.252-259
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate the effect of progressive body weight decrease combined with increasing level of overground walking speed training for patients with chronic stroke. Methods: Eighteen subjects with chronic stroke were composed of the control group (5% body weight support combined with increasing speed training) and the experimental group (progressive body weight decrease with increasing speed training); three sets, three times per week over a period of four weeks. Results: Significant differences in terms of comfortable gait speed (CGS) and the rate of change of CGS were observed between the control and experimental groups (p<0.05). However, no significant difference in the dynamic gait index was observed between the control and experimental groups (p>0.05). A significant difference in the 6 minute walking test (6MWT) was observed for the experimental group, and a significant difference in the rate of change for the 6MWT was observed between the control and experimental groups (p<0.05). Conclusion: The progressive body weight decrease combined with increasing in level of overground walking speed training may be a better and more effective method for community walking and reintegration.

Comparison of Underwater and Overground Treadmill Walking Exercise to Improve Gait and Physical Function in People After Stroke

  • Park, Si-Eun;Lee, Mi-Joung;Yoon, Bum-Chul;Lee, Byung-Hee;Shin, Hee-Joon;Choi, Wan-Suk;Park, Sung-Kyu;Jeon, Hye-Mi;Moon, Ok-Kon;Lee, Suk-Hee;Min, Kyoung-Ok
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • The purpose of this study was to compare the effects of treadmill walking in underwater and overground which affects gait and physical function of people who have had a stroke. Twenty people after a stroke who have become hemiplegic over 6 months were participated. Participants were divided into two groups: underwater treadmill group(UTG) and overground treadmill group(OTG). The intervention was done 4 times per weeks for 6 weeks and 1 session lasted for 30 minutes. Gait and physical function elements were measured at baseline, at the middle(3 weeks) and at the end of the intervention(6 weeks). For the elements of gait, walking velocity, affected stance phase, affected weight bearing were assessed. For the elements of physical function, Short Form 8(SF-8) health survey was used. The result of this study showed that both groups improved similarly in walking velocity. However participants in UTG improved more than those in OTG in affected stance phase(p<.05), affected weight bearing(p<.05) and emotional aspect(p<.001). Based on the results of this study, it can be suggested that treadmill walking both in underwater and on the ground can be effective in improving hemiplegic gait and physical function of people who have had a stroke. The result also suggest that the underwater treadmill exercise can be more effective than overground treadmill in restoration of gait in people after stroke.

  • PDF

Kinematics and Kinetics of the Lower Limbs of a Walking Shoe with a Plate Spring and Cushioning Elements in the Heel during Walking

  • Park, Seung-Bum;Stefanyshyn, Darren;Pro, Stergiou;Fausto, Panizzolo;Kim, Yong-Jae;Lee, Kyung-Deuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • The purposes of this study was to investigate the biomechanical influence of the walking shoe with a plate spring in the heel and interchangeable heel cushioning elements. Eighteen subjects walked in three conditions: 1) the walking shoes Type A-1 with a soft heel insert, 2) the Type A-2 shoe with a stiff heel insert, 3) a general walking shoe(Type B). Ground reaction forces, leg movements, leg muscle activity and ankle, knee and hip joint loading were measured and calculated during overground walking. During walking, the ankle is a few degrees more dorsiflexed during landing and the knee is slightly more flexed during takeoff with the Type A shoes. As a result of the changes in the walking movement, the ground reaction forces are applied more quickly and the peak magnitudes are higher. Muscle activity of the quadricep, hamstring and calf muscles decrease during the first 25% of the stance phase when walking in the Type A shoes. The resultant joint moments at the ankle, knee and hip joints decrease from 30-40% with the largest reductions occurring during landing.