• Title/Summary/Keyword: Overexcitation

Search Result 17, Processing Time 0.025 seconds

A Study on the Protective Coordination of Generator Overexcitation and Overvoltage Relay (발전기 과여자 및 과전압 계전기 보호협조에 관한 연구)

  • Park, Ji-Kyung;Kim, Kwnag-Hyun;Kim, Chul-Hwan;Lyu, Young-Sik;Yang, Jeong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1187-1194
    • /
    • 2017
  • After North American wide area black out on August 14, 2003, various studies have been conducted to find out the reason of the disaster. One of main reasons was misoperation of generator protection system. Since then, protective coordination between generator protection system and excitation system controls has been hot issue among electrical engineers. Among various generator protection relays, in this paper, we focused on generator overvoltage and overexcitation relay, which protect the over-flux condition of the generator. Thus, at first, we modeled the generator overvoltage, overexcitation relay and detailed power system including excitation system, governor and etc., based on actual field data. And then, we reviewed the protective coordination of generator overvoltage and overexcitation relay using electromagnetic transient program. In addition, we discussed the protective coordination method for redundant protection relays in both automatic voltage regulator and generator side.

Protective Relaying Algorithm for Transformer Using Wavelet Transform (웨이블렛 변환을 이용한 변압기 보호계전 알고리즘)

  • 홍동석;이종범
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.134-141
    • /
    • 2003
  • The power transformer is one of the very important electric facilities in power systems. Recently, current differential relay is widely used to protect such power transformer But if inrush occurs in transformer, relay can be tripped by judging like internal fault. Therefore the correct discrimination between internal winding fault, inrush and overexcitation should be performed. This paper presents a new protective relaying algorithm which discriminates inrush, internal faults and overexcitation of transformer modelled using BCTRAN and HYSDAT of EMTP. Discrimination between internal winding fault and inrush is revealed in simulation within 1/2 cycle after fault. Accordingly, it is evaluated that the proposed algorithm has better discrimination characteristics in various cases thin the current relaying for protection of transformer.

A Transformer Protection Relay Based on Induced Voltages

  • Kang, Yong-Cheol;Lee, Byung-Eun
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.70-78
    • /
    • 2003
  • This paper describes a transformer protection relay based on induced voltages. The ratio of the induced voltages of the primary and secondary windings is equal to the turns ratio during normal operating conditions such as magnetic inrush, overexcitation, and steady state, but it differs from the turns ratio in the case of internal faults. For a single-phase and a three-phase Y-Y transformer, the induced voltages are estimated and the ratios are compared with the turns ratio. For three-phase Y-Δ transformers, the differences between the induced voltages are estimated to use the line currents because delta-winding currents are practically unavailable. The proposed relay is tested under various conditions such as magnetic inrush, internal winding faults, overexcitation, and different core characteristics. The results evidently indicate that the relay successfully discriminates internal faults from magnetic inrush and overexcitation. This paper concludes by implementing the relay into a TMS320C6701 digital signal processor and reports satisfactory results. The relay requires no hysteresis data and can reduce the operating time of a relay.

A Study on Digital Protection Algorithm of IED for Hydroelectric Generating Unit (수력발전소 IED의 디지털 보호 알고리즘에 관한 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.149-156
    • /
    • 2014
  • Generator of hydroelectric generating unit is to be protected by the digital protection IED. Now, any IED of large capacity for hydro power plant was not developed by domestic technology. This is because it is required for the generator of the high reliability technology and considered as due to the sale of the market of IED device is small. However, the protection IED must be develop by domestic technology to meet the advanced needs of the construction and replacement of electrical equipment in accordance with the new power plant development. In this paper, a digital algorithms for protection IED of large size of hydroelectric generating unit were designed. The algorithms consist of the stator protection, anti-motoring, overexcitation and loss of excitation. The performance of the algorithms were evaluated by using the simulation data collected from the PSCAD/EMTDC software. From test results, it can be seen that the developed algorithms were not maloperation.

3 phase Power Transformer Protective Relaying Algorithm based on Fuzzy Inference (Fuzzy 추론을 이용한 3상 전력용 변압기 보호계전 알고리즘)

  • Kim, S.T.;Jin, B.G.;Chung, S.K.;Lee, S.J.;Kang, S.H.;Yoon, S.H.;Lee, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.197-199
    • /
    • 2000
  • The various criteria to identify the disturbances of the power transformer has been reported in this paper. They have been derived through EMTP simulations of internal faults, inrush and overexcitation for the model of 154/22.9[kV], 40[MVA], Y-Y three-phase power transformer. We also propose the algorithm which makes bpa Functions and infers the final decision from them based on Modfied Dempster-Shafer's rule of combination.

  • PDF

A Modified Current Differential Relay for Transformer Protection (변압기 보호용 수정 전류차동 계전방식)

  • 강용철;김은수;원성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2004
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a large exciting current, which can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. The relay calculates core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. Comparison study with the conventional differential relay with harmonic blocking is also shown. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

Estimation of the Separate Primary and Secondary Leakage Inductances of a Y-Δ Transformer Using Least Squares Method

  • Kang, Yong-Cheol;Lee, Byung-Eun;Hwang, Tae-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.538-544
    • /
    • 2010
  • This paper proposes an estimation algorithm for the separate primary and secondary leakage inductances of a three phase $Y-\Delta$ transformer using least squares method. The voltage equations from the primary and secondary windings are combined into a differential equation to estimate the separate primary and secondary leakage inductances in order to use the line current of the delta winding. Separate primary and secondary leakage inductances are obtained by applying least squares method to the differential equation. The performance of the proposed algorithm is validated under transient states, such as magnetic inrush and overexcitation, as well as in the steady state with various cut-off frequencies of low-pass filter. The proposed technique can accurately generate separate leakage inductances both in the steady and transient states.

A Current Differential Relaying Algorithm for Power Transformers Using the Difference of a Differential Current (차전류의 차분을 이용한 변압기 보호용 전류차동 계전방식)

  • Kang, Y.C.;Kim, D.S.;Lee, B.E.;Kim, E.S.;Won, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.274-276
    • /
    • 2002
  • This paper proposes a current differential relaying algorithm for power transformers using the third difference function of a differential current. The algorithm observes the instants when the wave-shape of the differential current is changed due to the change of the magnetization inductance. If the value of the third difference is bigger than the threshold, the output of a current differential relay is blocked for a cycle. In the cases of magnetic inrush and overexcitation, the blocking signal is maintained: however, for internal faults, reset in a cycle. The test results clearly show that the algorithm successfully distinguishes internal faults from magnetizing inrush.

  • PDF

Protective Relaying Algorithm for Transformer Using Neuro-Fuzzy based on Wavelet Transform (웨이브렛 변환 기반 뉴로-펴지를 이용한 변압기 보호계전 알고리즘)

  • Lee Jong-Beom;Lee Myoung-Rhun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.242-250
    • /
    • 2005
  • This paper proposes a new protective relaying algorithm using Neuro-Fuzzy and wavelet transform. To organize advanced nuero-fuzzy algorithm, it is important to select target data reflecting various transformer transient states. These data are made of changing-rates of Dl coefficient and RSM value within half cycle after fault occurrence. Subsequently, advanced neuro-fuzzy algorithm is obtained by converging the target data. As a result of applying the advanced neuro-fuzzy algorithm, discrimination between internal fault and inrush is correctly distinguished within 1/2 after fault occurrence. Accordingly, it is evaluated that the proposed algorithm can effectively protect a transformer by correcting discrimination between winding fault and inrushing state.

A Current Differential Relaying Algorithm for Three-Phase Transformer Considering the Nonlinear Magnetization Characteristics of the Core (비선형 자화특성을 고려한 3상 변압기 보호용 전류차동 계전방식)

  • Kang, Y.C.;Jin, E.S.;Won, S.H.;Lim, U.J.;Kang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.320-322
    • /
    • 2003
  • This paper describes a current differential relaying algorithm for a three-phase transformer considering the nonlinear magnetization characteristics of the core. The iron-loss current is obtained from the calculated induced voltage and the core-loss resistance. The magnetizing current is calculated from the estimated core flux and the magnetization curve. The proposed algorithm uses the modified differential current, which is obtained by subtracting the iron-loss current and the magnetizing current from the conventional differential current. The various test results show that the algorithm can discriminate internal fault from magnetic inrush, overexcitation and an external fault.

  • PDF