• Title/Summary/Keyword: Overcurrent protection

Search Result 65, Processing Time 0.023 seconds

A Study On The Methods Of Signal Processing For High Impedance Fault Detection (고저항 지락사고 검출을 위한 신호처리 방법에 관한 연구)

  • Lee, Sung-Hwan;Woo, Chun-Hee;Kang, Sin-Jun;Woo, Kwang-Bang;Lee, Jin;Kim, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.156-158
    • /
    • 1993
  • This paper presents several techniques of power spectrum estimation for high impedance fault detection. High impedance faults are those faults with current too low to be reliably cleared by conventional overcurrent protection. So power spectrum estimation is required. AR and MA techniques require optimal order for good performance of power spectrum estimation because these techniques are unstable for order selection. ARMA and Extended techniches are stable for order selection and have very sharp response. So ARMA and Extended Prony techniques are suitable for our purpose.

  • PDF

The application of Overcurrent Ground Relay(OCGR) for High Impedance Fault Protection in Transmission Systems (송전계통 고저항지락사고 보호를 위한 지락과전류계전기 적용방안)

  • Lee, Seung-Jae;Lim, Jong-Yun;Lee, Jong-Bum;Kim, Chul-Hwan;Kim, Young-Han;Kim, Il-Dong;Han, Kwoung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.127-129
    • /
    • 1996
  • 고저항지락사고시 선로의 지락후비보효용인 지락거리계전기 및 변압기 후비보호용 방향지락과 전류계전기의 비협조 문제로 인하여 광범위한 정전이 유발될수 있다. 본 논문에서는 이에 대한 대책으로 고저항지락보호용 과전류계전기의 도입과 적용방안에 대하여 제안한다.

  • PDF

Discrimination of the Faulted Feeder in Grid with Distributed Generations Considering the Characteristics of Protection Devices (보호기기 특성을 고려한 분산전원 연계 계통의 사고 배전선 판별 알고리즘)

  • Kim, S.G.;Kim, K.H.;Jang, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.243-245
    • /
    • 2004
  • This paper proposes the discrimination method for the fault location, whether it is within the line where the distributed generation(DG) is integrated or out of the line (but sharing the same bus of the substation). In general, DG has to be disconnected from the grid when the fault occurs on the interconnected distribution feeder as soon as possible. However, the faults occured on the neighboring feeder would mistakenly cause the disconnection of the DG. For reliable operation of DG, DG should be sustained at the fault occurred on neighboring distribution feeders. The proposed identification method utilizes the impedance monitored from the DG and examines the coordination of overcurrent relay of the distribution system. This paper describes how the proposed method to identify the faulted feeder and how the method can be utilized.

  • PDF

Flexible Voltage Support Control with Imbalance Mitigation Capability for Inverter-Based Distributed Generation Power Plants under Grid Faults

  • Wang, Yuewu;Yang, Ping;Xu, Zhirong
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1551-1564
    • /
    • 2016
  • The high penetration level of inverter-based distributed generation (DG) power plants is challenging the low-voltage ride-through requirements, especially under unbalanced voltage sags. Recently, a flexible injection of both positive- (PS) and negative-sequence (NS) reactive currents has been suggested for the next generation of grid codes. This can enhance the ancillary services for voltage support at the point of common coupling (PCC). In light of this, considering distant grid faults that occur in a mainly inductive grid, this paper proposes a complete voltage support control scheme for the interface inverters of medium or high-rated DG power plants. The first contribution is the development of a reactive current reference generator combining PS and NS, with a feature to increase the PS voltage and simultaneously decrease the NS voltage, to mitigate voltage imbalance. The second contribution is the design of a voltage support control loop with two flexible PCC voltage set points, which can ensure continuous operation within the limits required in grid codes. In addition, a current saturation strategy is also considered for deep voltage sags to avoid overcurrent protection. Finally, simulation and experimental results are presented to validate the effectiveness of the proposed control scheme.

A Novel Algorithm for Fault Classification in Transmission Lines Using a Combined Adaptive Network and Fuzzy Inference System

  • Yeo, Sang-Min;Kim, Chun-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.191-197
    • /
    • 2003
  • Accurate detection and classification of faults on transmission lines is vitally important. In this respect, many different types of faults occur, such as inter alia low impedance faults (LIF) and high impedance faults (HIF). The latter in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if undetected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. Because of the randomness and asymmetric characteristics of HIFs, their modeling is difficult and numerous papers relating to various HIF models have been published. In this paper, the model of HIFs in transmission lines is accomplished using the characteristics of a ZnO arrester, which is then implemented within the overall transmission system model based on the electromagnetic transients program (EMTP). This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System (ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square (RMS) values of 3-phase currents and zero sequence current. The performance of the proposed algorithm is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results demonstrate that the ANFIS can detect and classify faults including LIFs and HIFs accurately within half a cycle.

A study of coordination under short-circuit conditions between circuit-breakers (저압차단기의 차단보호협조 특성연구)

  • Oh, J.S.;Na, C.B.;Ham, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.476-478
    • /
    • 2001
  • Coordination under short-circuit conditions is a systematic application of protective devices in the electrical power system, which, in response to a fault, will remove only a minimum amount of equipment from service. The objective is not only to minimize the equipment damage and process outage costs, but also to protect personnel from the effects of these failures. The coordination study of an electric power system consists of an organizes time-current study of all devices in series from the utilization device to the source. This study is a comparison of the time it takes the individual devices to operate when certain levels of normal or abnormal current pass through the protective devices. The objective of a coordination study is to determine the characteristics, ratings, and settings of overcurrent protective devices that will ensure that the minimum unfaulted load is interrupted when the protective devices isolate a fault or overload anywhere in the system. At the same time, the devices and settings selected should provide satisfactory protection against overloads on the equipment and interrupt short-circuit as rapidly as possible.

  • PDF

Overvoltage Protection Controller Design of Distributed Generation Connected to Power Grid Considering Islanding Condition

  • Cha, Jae-Hun;Park, Kyung-Won;Ahn, Hong-Seon;Kwon, Kyoung-Min;Oh, Jin-Hong;MAHIRANE, Philemon;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.599-607
    • /
    • 2018
  • Distributed generation (DG) is being highlighted as an alternative for future power supplies, and the number of DG systems connected to conventional power systems is steadily increasing. DG generators are designed using power electronics and can give rise to various power quality problems, such as overvoltage or overcurrent. Particularly, unintentional islanding operation can occur in a conventional power system when the power grid is separated from the DG systems. Overvoltage may occur in this situation, depending on the power generation and power consumption. However, overvoltage phenomena might not happen even when islanding occurs. Therefore, it is necessary to analyze the fault characteristics during islanding. In this study, a fault analysis of islanding operation was carried out using PSCAD/EMTDC, and a countermeasure for the overvoltage problem is proposed.

Reliability on the Unintended Trips of Residual Current Operated Circuit Breakers due to Surge Currents (서지전류에 의한 누전차단기의 의도하지 않은 트립에 대한 신뢰성)

  • Lee, Bok-Hee;Kim, Sang-Hyun;Kim, Yoo-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.79-84
    • /
    • 2012
  • As the huge economical loss and function paralysis of information technology-based systems can be caused by the misoperation of residual current devices(RCDs) due to surge voltages and currents, RCDs shall not operate by surge currents. In this paper, in order to evaluate the reliability of residual current operated circuit-breakers with integral overcurrent protection for household and similar uses((RCBOs) stressed by surges, the unintended trip characteristics of RCBOs under surge currents were experimentally investigated using the combination wave generator. Seven different types of single-phase RCBOs being present on the domestic market were investigated according to KS C IEC 61009-1 standard. As a result, all kinds of specimens were satisfied the requirements for 0.5 [${\mu}s$]/100[kHz] ring wave impulse currents. Most of specimens stressed by the 8/20[${\mu}s$] impulse current tripped at least one or more, and some of them were broken down during consecutive tests. It was found that only one type of specimens meets the L-N mode immunity to the combination wave of 1.2/50[${\mu}s$] impulse voltage and 8/20[${\mu}s$] impulse current.

Design and Fabrication of a Digital Protection Relay for Reverse-Open Phase (디지털 역결상 보호 계전기의 설계 및 제작)

  • Kim, Woo-Hyun;Kil, Gyung-Suk;Kim, Sung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.313-319
    • /
    • 2019
  • Induction motors connected with a three-phase AC system may malfunction due to reverse phase or open phase faults. Conventional overcurrent relays and overheating relays are used to prevent such accidents; however, their drawbacks include a low response speed and false operation. Therefore, in this study, a digital relay for the reverse-open phase was designed and fabricated. This relay can detect the reverse phase and open phase faults and send a trigger signal to the control circuit. The proposed relay was developed based on a microcontroller. The detection times of the reverse phase and open phase were verified as 320ms and 80ms, respectively. Compared with conventional relays that only protect the motor from one type of fault, the proposed relay can detect both, reverse phase and open phase faults. In addition, the fault detection, identification criterion, and trigger signal patterns can be modified by programming according to the requirements of users.

Design of Seawater Rechargeable Battery Package and BMS Module for Marine Equipment (해양기기 적용을 위한 해수이차전지 패키지 및 BMS 모듈 설계)

  • Kim, Hyeong-Jun;Lee, Kyung-Chang;Son, Ho-Jun;Park, Shin-Jun;Park, Cheol-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2022
  • The design of a battery package and a BMS module for applications using seawater rechargeable batteries, which are known as next-generation energy storage devices, is proposed herein. Seawater rechargeable batteries, which are currently in the initial stage of research, comprise primarily components such as anode and cathode materials. Their application is challenging owing to their low charge capacity and limited charge/discharge voltage and current. Therefore, we design a method for packaging multiple cells and a BMS module for the safe charging and discharging of seawater rechargeable batteries. In addition, a prototype seawater rechargeable battery package and BMS module are manufactured, and their performances are verified by evaluating the prevention of overcharge, overdischarge, overcurrent, and short circuit during charging and discharging.