• Title/Summary/Keyword: Overcoming Terrain

Search Result 19, Processing Time 0.024 seconds

Development of Mobile Robot for Rough Terrain (야지 주행을 위한 견마형 로봇 개발)

  • Lee, Ji-Hong;Shim, Hyung-Won;Jo, Kyoung-Hwan;Hong, Ji-Mi;Kim, Jung-Bae;Kim, Sung-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.883-895
    • /
    • 2007
  • In this work, we present the development of a patrol robot which is intended to navigate outdoor rough terrain. Proposed mechanism consists of six legs for overcoming an obstacle, and six wheels for traveling. Also, in order to absorb vibration in rough terrain effectively, the slide-spring system and tubed type tire are adopted to each leg and each wheel. The control system of robot consists of several imbedded boards for management of lots of diverse devices such as sensors designed for rough terrain, motor controllers, camera, micro controller and so on. And the base system of the robot is designed to operate in real time and to surveille in the vicinity of the robot, and the robot system is controlled by wireless LAN connected to GUI-based remote control system, while CAN communication connects the control board and the device controllers for sensors and motor controllers. For operating this robot system efficiently, we propose the control algorithms for autonomous navigation using GPS, stabilization maintenance by posture control, obstacle-avoidance by impedance control, and obstacle-overcoming with interference-avoidance between wheels. The performance of the robot and the proposed algorithms are tested and proved by a set of experiments in outdoor rough terrain.

A Study on the Design of Embedded System-Based Wheel Drive Robots for Overcoming the Terrain (지형 극복을 위한 임베디드 시스템 기반 바퀴 구동형 로봇의 설계에 관한 연구)

  • Kim, Min Gyu;Seon Ji Ho;Jeong Se Jin;Kim Sang Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.559-567
    • /
    • 2024
  • The purpose of this paper is to design and implement a wheel-driven small intelligent robot with intelligent sensor signal processing and various driving methods to overcome non-flat terrain such as slopes and steps and avoid obstacles. An eccentric gear structure was proposed to overcome non-flat terrain, optimal sensor signal processing was applied to maintain real-time balance, and an omnidirectional driving method that enables obstacle recognition and escape from a narrow space using a LiDAR sensor was proposed and designed to overcome obstacles. An optimal embedded system was designed and constructed to implement and control the intelligent elements of the robot.

Analysis for Stability for Passive Mechanisms of High Speed Mobile Robot on Rough Terrain (야지 고속 주행 로봇을 위한 패시브 메커니즘의 안정성 비교 분석)

  • Kim, Youngjin;Jeon, Bongsoo;Kim, Jayong;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.2
    • /
    • pp.124-131
    • /
    • 2014
  • The robot mechanisms that were previously researched had only been conducted for the purpose of overcoming the obstacles stably at low speed driving and enhancing the stability against high speed circuitous driving, and yet, the mechanism satisfying two purposes. However, in order to stably drive with high speed on rough terrain, there is a need for satisfying both of these purposes, as well as testing the efficiency of the mechanisms at high speed driving. There, this paper simulated some of the passive mechanisms and focused on checking the performances of passive mechanisms through simulations and analyzing each mechanism on the basis of an evaluation index. The simulation was conducted by Adams (The Multi-body Dynamics Simulation Solution) and used various types of passive mechanisms which were introduced in the robotics field. As a result, the study confirmed that passive mechanisms have a number of situations that affect the driving stability on each direction of roll and pitch. Further study is needed about active mechanism.

Mecha-numwheel RC Car for Overcoming Obstacles Based on Bluetooth (블루투스 기반의 장애물 극복용 메카넘휠 RC 카)

  • Se-Chan Cha;Dong-Hyeon Im;Sang-Hwi Lee;Woung-Jae Lee;Young-Oh Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.283-288
    • /
    • 2024
  • In this paper, a novel mechanism for overcoming obstacles is studied by designing an All-Directional RC car for obstacle traversal and creating test courses with various obstacles. We propose an algorithm for controlling the RDS3115 servo motor and utilize a gyro sensor to detect the incline of various obstacle terrains, adjusting the servo motor's angle to enable the RC car to navigate the terrain. Through terrain experiments in the test course, we determined the most suitable RC car turning angles for traversing all obstacle terrains created in the experimental terrain.

Revolutionizing Nepal's Transportation: The Potential of Advanced Air Mobility (AAM) in Overcoming Geographical Challenges

  • Leeladhar Joshi;Kwang-Byeng Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.37-47
    • /
    • 2024
  • This paper examines the unique transportation challenges posed by Nepal's diverse and rugged terrain, which significantly hampers socio-economic development due to its negative impact on infrastructure, trade, and accessibility. Despite ongoing efforts to enhance road and traditional air transport systems, Nepal's geographic and environmental conditions continue to obstruct efficient connectivity, particularly in rural and remote areas. This study proposes Advanced Air Mobility (AAM) as a transformative solution, leveraging recent technological advancements in unmanned aerial vehicles (UAVs) and electric vertical takeoff and landing (eVTOL) aircraft. By conducting a comprehensive analysis of Nepal's current transportation infrastructure and the feasibility of AAM implementation, the paper highlights the potential benefits of AAM, including improved accessibility, economic growth, and environmental sustainability. Furthermore, it addresses the anticipated challenges and regulatory considerations necessary for integrating AAM into Nepal's transportation network. Through a multidisciplinary approach, this research aims to contribute to the discourse on overcoming transportation barriers in mountainous regions, offering policy recommendations and identifying areas for future study to facilitate the adoption of AAM in Nepal and similar contexts worldwide.

Design and Development of Terrain-adaptive and User-friendly Remote Controller for Wheel-Track Hybrid Mobile Robot Platform (휠-트랙 하이브리드 모바일 로봇 플랫폼의 지형 적응성 및 사용자 친화성 향상을 위한 원격 조종기 설계와 개발)

  • Kim, Yoon-Gu;An, Jin-Ung;Kwak, Jeong-Hwan;Moon, Jeon-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.558-565
    • /
    • 2011
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for surveillance, reconnaissance, search and rescue, etc. We considered a terrain-adaptive and transformable hybrid robot platform that is equipped with rapid navigation capability on flat floors and good performance in overcoming stairs or obstacles. The navigation mode transition is determined and implemented by adaptive driving mode control of the mobile robot. In order to maximize the usability of wheel-track hybrid robot platform, we propose a terrain-adaptive and user-friendly remote controller and verify the efficiency and performance through its navigation performance experiments in real and test-bed environments.

Modular Type Robot for Field Moving and Tree Climbing (야지 구동과 나무 등반을 위한 모듈형 로봇의 개발)

  • Lee, Min-Gu;Yoo, Sang-Jun;Park, Jong-Won;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.118-125
    • /
    • 2012
  • Based on recent advances in technology, many robots are developed and they are used in a hazardous environment such as military operation, fire, and building collapse and so on. Among them, reconnaissance robot should be able to perform various missions which people can not do. So it needs the capability of moving with hiding its position on rough terrain, overcoming obstacles, and guaranteeing its efficiency of reconnaissance. For this reason there are in progress of researching biomimetic robots. Therefore in this paper we proposed robot mechanism, two modules based on the screw and wheel mechanism which mimic snake, and the spiral climbing method was considered for overcoming the situation when moving on the trees.

DETAILS OF PRACTICAL IMPLEMENTATION OF REAL-TIME 3D TERRAIN MODELING

  • Young Suk Kim;Seungwoo Han;Hyun-Seok Yoo;Heung-Soon Lim;Jeong-Hoon Lee;Kyung-Seok Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.487-492
    • /
    • 2009
  • A large-scaled research project titled "Intelligent Excavating System (IES)" sponsored by Korean government has launched in 2006. An issue of real-time 3D terrain modeling has become a crucial point for successful implementation of IES due to many application limitations of state-of-the-art techniques developed in various high-technology fields. Many feasible technologies such as laser scanning, structured lighting and so on were widely reviewed by professionals and researchers for one year. Various efforts such as literature reviews, interviews, and indoor experiments make us select a structural light technique and stereo vision technique as appropriate techniques for accomplishment of real-time 3D terrain modeling. It, however, revealed that off-the-shelf products of structural light and stereo-vision technique had many technical problems which should be resolved for practical applications in IES. This study introduces diverse methods modifying off-the-shelf package of the structural light method, one of feasible techniques and eventually allowing this technique to be successfully utilized for achieving fundamental research goals. This study also presents many efforts to resolve practical difficulties of this technique considering basic characteristics of excavating operations and particular environment of construction sites. Findings showed in this study would be beneficial for other researchers to conduct new researches for application of vision techniques to construction fields by provision of detail issues about practical application and diverse practical methods as solutions overcoming these issues.

  • PDF

Quadruped Robot for Walking on the Uneven Terrain and Object Detection using Deep Learning (딥러닝을 이용한 객체검출과 비평탄 지형 보행을 위한 4족 로봇)

  • Myeong Suk Pak;Seong Min Ha;Sang Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.237-242
    • /
    • 2023
  • Research on high-performance walking robots is being actively conducted, and quadruped walking robots are receiving a lot of attention due to their excellent mobility and adaptability on uneven terrain, but they are difficult to introduce and utilize due to high cost. In this paper, to increase utilization by applying intelligent functions to a low-cost quadruped robot, we present a method of improving uneven terrain overcoming ability by mounting IMU and reinforcement learning on embedded board and automatically detecting objects using camera and deep learning. The robot consists of the legs of a quadruped mammal, and each leg has three degrees of freedom. We train complex terrain in simulation environments with designed 3D model and apply it to real robot. Through the application of this research method, it was confirmed that there was no significant difference in walking ability between flat and non-flat terrain, and the behavior of performing person detection in real time under limited experimental conditions was confirmed.