• Title/Summary/Keyword: Overburden pressure

Search Result 81, Processing Time 0.024 seconds

Numerical Analysis on Drained and Undrained Pullout Capacity in Reinforced Soil (보강토에서의 배수 및 비배수 인발력에 대한 수치해석)

  • Lee, Hong-Sung;Son, Moo-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.113-123
    • /
    • 2007
  • In order to ensure the stability of reinforced structures backfilled with low permeability soil, it is very important to determine the change in undrained pullout capacity compared to drained pullout capacity prior to design. In this research, a series of numerical analyses on laboratory pullout tests have been performed on different materials (clean sand, 5, 10, and 15% silty sand), different overburden pressures (30, 100 and 200 kPa), and different drainage conditions (drained and undrained) in order to compare drained pullout capacity with undrained pullout capacity. The results of numerical analysis also have been compared with the results of the laboratory pullout tests. The analysis results show that both drained and undrained pullout capacity are influenced by silt contents and increase with increase of friction angle of the soil and overburden pressure. In undrained condition, the effective stresses acting on the reinforcement decrease as excessive pore pressures are generated, resulting in decrease in pullout capacity; 57% for 30 kPa, and 70% for 100 and 200 kPa. These results show a good agreement with the results of the laboratory pullout tests performed under the same condition.

Design on the large section of station tunnel under shallow overburden (저토피고 대단면 정거장터널의 설계)

  • Jeong, Yun-Young;Choi, Hae-Joon;Kim, Byung-Ju;Yu, Bong-Won;Kim, Yong-Il;Oh, Sung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.171-182
    • /
    • 2007
  • For minimizing the effect on the focus of civil traffic and environment conditions related to the excavation at the traffic jamming points, an underground station tunnel was planned with 35.5 m in length and bigger area than $200\;m^2$ in sedimentary rock mass. It faced the case that the overburden was just under 13 m. Not based on a pattern design but on the case histories of similar projects and arching effect, the design of large section tunnel under shallow overburden was investigated on three design subjects which are shape effect on the section area, application method of support pressure, and supporting and tunnel safety. According to the mechanical effect from section shape, a basic design and a preliminary design was obtained, and then supporting method of large section was planned by the supporting of NATM and a pipe roof method for subsidence prevention and mechanical stability. From the comparative study between both designs, it was found that the basic design was suitable and acceptable for the steel alignment of tunnel lining, safety and the design parameter restricted by the limit considered as partition of the excavation facilities. Through the analysis result of preliminary design showing the mechanical stability without stress concentration in tunnel arch level, it also was induced that shape effect of the large section area and yielding load obtained from deformation zone in the surrounding rock mass of tunnel have to be considered as major topics for the further development of design technique on the large section tunnel.

  • PDF

Numerical modelling of bottom-hole rock in underbalanced drilling using thermo-poroelastoplasticity model

  • Liu, Weiji;Zhou, Yunlai;Zhu, Xiaohua;Meng, Xiannan;Liu, Mei;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.537-545
    • /
    • 2019
  • Stress analysis of bottom-hole rock has to be considered with much care to further understand rock fragmentation mechanism and high penetration rate. This original study establishes a fully coupled simulation model and explores the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on the stress distribution in bottom-hole rock. The research finds that in air drilling, as the well depth increases, the more easily the bottom-hole rock is to be broken. Moreover, the mud pressure has a great effect on the bottom-hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock is. Furthermore, the maximum principal stress of the bottom-hole increases as the mud pressure, well depth and temperature difference increase. The bottom-hole rock can be divided into three main regions according to the stress state, namely a) three directions tensile area, b) two directions compression areas and c) three directions compression area, which are classified as a) easy, b) normal and c) hard, respectively, for the corresponding fragmentation degree of difficulty. The main contribution of this paper is that it presents for the first time a thorough study of the effect of related factors, including stress distribution and temperature, on the bottom-hole rock fracture rather than the well wall, using a thermo-poroelastoplasticity model.

Measurement of thermal properties by TPS-technique and thermal network analysis (TPS를 통한 열물성치 획득 및 네트워크모델을 이용한 열해석)

  • Yun, Tae-Sup;Kim, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.263-268
    • /
    • 2010
  • Thermal characterization of geomaterials has significant implication on the geothermal energy, disposal of nuclear wastes, geological sequestration of carbon dioxides and recovery of hydrocarbon resources. Heat transfer in multiphase materials is dominated by the thermal conductivity of consisting components, porosity, degree of saturation and overburden pressure, which have been investigated by the empirical correlation at macro-scale. The thermal measurement by Transient Plane Source (TPS) and associated algorithm for interpretation of thermal behavior in geomaterials corroborate the robustness of sensing techniques. The method simultaneously provides thermal conductivity, diffusivity and volumetric heat capacity. The newly introduced thermal network model enables estimating thermal conductivity of geomaterials subjected to the effective stress, which has not been evaluated using previous thermal models. The proposed methods shows the applicability of reliability of TPS technique and thermal network model.

  • PDF

Case Study Top-Base Foundation Static Loading Test in Reclaimed Land (매립지반의 팽이말뚝 평판재하시험 사례 연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Lee, Ae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.721-728
    • /
    • 2008
  • Top-Base Method is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and the effect of restraining settlement when the bearing capacity of the ground is not enough. Top-shaped cone concrete foundations are installed in graveled laid over soft ground. The principle of the basic method is to maximize effect of dispersing the overburden pressure by increasing the contact area of the top-shaped cone. Therefore, the bearing capacity is increased and the settlement is decreased by the embedded resistance of pile part in the ground. In this paper, the plate bearing test was conducted to evaluate the feasibility of Top-Base foundation. Based on the test results, the coefficient of subgrade reaction, elastic modulus, and settlement of foundation on reclaimed land was derived.

  • PDF

A study on the Stability of Rail way Construction on the Reclaimed Land for Domestic Marine Clay Using the Seismic Analysic (연약지반상 지진하중을 고려한 철도노반의 안정성 검토에 관한 연구)

  • Kim Young-Soo;Kim Moo-Ill
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1071-1076
    • /
    • 2004
  • The purpose. in this study. is to analyze liquefaction potential of Inchon International Airport at the Area Phase ' I ' for Railway Construction of all, seismic response was analyzed using the computer program, Shake91. Four methods proposed by Seed & Idriss. Eurocode, Iwasaki & Tatsuoka. and Ishihara were used for assessment of liquefaction potential and safety factors calculated form these methods are compared. Based on the results of seismic response analysis, the maximum acceleration at the ground surface is larger than that evaluated site factor effect by using site factor because these areas are composed of very loose sand clay. Especially, in the case of analysis with long period earthquake data. it is appeared that the acceleration of earthquake is amplified more largely. Therefore, accurate seismic response analysis is suggested for the design on the important structures on reclaimed land. The analytical results of liquefaction potential show that the increments of N-value and effective overburden pressure with remediation make safety factors increase. Through comparing the safety factors evaluated from four method, the safety factor calculated by See & Idriss method in the lowest one and it is found that the SPT N-value effect the safety factor very largely. And, Iwasaki & Tatsuoka method is affected by various factors such as average grain size. fine contents, confining pressure. In conclusion. to minimize earthquake Risk by liquefaction, the efficient remediation is essential and seismic response analysis should be carride out.

  • PDF

Calculation and field measurement of earth pressure in shield tunnels under the action of composite foundation

  • Chi Zhang;Shi-ju Ma;Yuan-cheng Guo;Ming-yu Li;Babak Safaei
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.17-27
    • /
    • 2023
  • Taking a subway shield tunnel in a certain section of Zhengzhou Metro Line 5 as an example, the field tests of shield cutting cement-soil monopile composite foundation were carried out. The load and internal force of the tunnel lining under the action of composite foundation were tested on-site and the distribution characteristics and variation laws of earth pressure around the tunnel under the load holding state of the composite foundation were analyzed. Five different load combinations (i.e., overburden load theory + q0, Terzaghi's theory + q0, Bierbaumer's theory + q0, Xie's theory + q0, and the proposed method (the combination of compound weight method and Terzaghi's theory) + q0) were used to calculate the internal force of the tunnel structure and the obtained results were compared with the measured internal force results. The action mode of earth pressure on the tunnel lining structure was evaluated. Research results show that the earth pressure obtained by the calculation method proposed in this paper was more consistent with the measured value and the deviation between the two was within 5%. The distribution of the calculated internal force of the tunnel structure was more in line with the distribution law of field test data and the deviation between the calculated and measured values was small. This effectively verified the rationality and applicability of the proposed calculation method. Research results provided references for the design and evaluation of shield tunnels under the action of composite foundations.

A Study on the Behaviour of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.89-97
    • /
    • 2008
  • A series of field tests were performed to investigate the behavior of jacket anchor and to evaluate the ultimate bond stress of jacket anchor. From twelve sets of field tests on the jacket anchor and general type ground anchor, it was observed that the pullout resistance of jacket anchor is significantly larger than that of the ground anchor and that the plastic deformation of jacket anchor is significantly smaller than that of general ground anchor at the same loading cycle. Especially in gravel layers, the jacket anchor provides more than 250% increase in ultimate resistance and more than 600% reduction in plastic deformation, compared with the general ground anchor. Finally, the relationship between the injection pressure and overburden pressure is proposed to determine the optimum injection pressure, based on additional field test results.

Evaluation on Undrained Shear Strength considering Consolidation Characteristics for Busan Clay (부산 점토의 압밀특성과 연계한 비배수전단강도 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.41-49
    • /
    • 2017
  • In this study, a series of laboratory and in-situ tests such as FVTs and CPTUs were carried out to evaluate undrained shear strength related to quasi overconsolidated characteristics in the near-surface clay at Busan new port. Using unconfined compression and field vane test results, correlation between undrained shear strength and effective overburden pressure, that is, equation of $10+0.262{\sigma}^{\prime}v_0$ (kPa) was obtained. From oedometer tests, OCR is around 1.9 at depths lower than 7 m and OCR below this depth is very close to unit. As stated by Hanzawa et al. (1983), a natural clay deposit in the near-surface, even in normally consolidated state, is more and less apparently overconsolidated due to aging effects such as chemical bonding. Based on this concept, it can be inferred that intercept of equation is mobilized due to chemical bonding irrespective of effective overburden pressure and strength incremental ratio in normally consolidated state is 0.262. From CPTU results, same trend was confirmed. The further study should be necessary to judge whether upper clay is under overconsolidated state due to chemical bonding or not based on the depositional environment.

The Effect of Cut-slope on Structural Behavior of Cut-and-Cover Tunnel (굴착경사가 개착식터널의 구조적거동에 미치는 영향에 관한 연구)

  • 유건선
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.245-255
    • /
    • 2001
  • Existing cut-and-cover tunnels are designed regardless of cut-slope under the assumption that the overburden weight of backfill soil acts on tunnel arch and the earth pressure at rest acts on tunnel walls. However, actual earth pressures acting on the tunnel lining depend on open-cut size composed of cut-slope and cut-width, and thus the tunnel lining shows a different structural behavior. This study investigated the effect of cut-slope on structural behavior of the cut-and-cover tunnel lining as follows; Firstly, a comprehensive numerical analysis method using FLAC2D code was used and verified by field measurements of tunnel profile. Secondly, based on the verified numerical analysis technique, earth pressure acting on the lining, and displacement and sectional force developed on the lining were estimated with various shapes of cut-slopes$30^{\circ}\;, 456{\circ},\; 60^{\circ},\; and\;75^{\circ}%). Numerical analysis results indicate that the steeper cut-slope shows the more displacement and moment of the tunnel lining.

  • PDF