• 제목/요약/키워드: Over current relay

검색결과 91건 처리시간 0.021초

Modified-Current-Differential Relay for Transformer Protection

  • Kang Yong-Cheol;Jin En-Shu;Won Sung-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권1호
    • /
    • pp.1-8
    • /
    • 2005
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a significant exciting current, which can cause malfunction of a current-differential relay. This paper proposes a modified-current-differential relay for transformer protection. The relay calculates the core-loss current from the induced voltage and the core-loss resistance as well as the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. A comparative study of the conventional differential relay with harmonic blocking is presented. The proposed relay not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the relay speed.

잔류자속에 무관한 변압기 보호용 수정전류차동 계전기 (Modified Current Differential Relay for Transformer Protection Unaffected by Remanent flux)

  • 강용철;김은숙
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권9호
    • /
    • pp.500-506
    • /
    • 2004
  • This paper proposes a modified current differential relay for transformer protection unaffected by the remanent flux. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. To cope with the remanent flux, before saturation, the relay calculates the core-loss current and uses it to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the actual core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

계통변화를 고려한 자율 적응형 과전류 계전기 (Autonomous Adaptive Digital Over Current Relay)

  • 윤준석;최면송;이승재;현승호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권8호
    • /
    • pp.444-449
    • /
    • 2003
  • In this paper present Autonomous Adaptive Digital Over Current Relay for distribution networks which acts autonomous setting using the short circuit impedance measured by relay of power systems. Automation of relay setting is one of the basic requirements for distribution automation, although manual relay setting is used at present. The short circuit impedance from a power source in distribution networks essential for the Autonomous Relay Setting changes frequently in distribution networks. In this paper the short circuit impedance is calculated with voltage and current measured in real time operation of digital relay using the Recursive Least Squares. A new method of digital relay setting is introduced using the the short circuit impedance and load current.

변압기 보호용 수정 전류차동 계전방식 (A Modified Current Differential Relay for Transformer Protection)

  • 강용철;김은수;원성호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권2호
    • /
    • pp.80-86
    • /
    • 2004
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a large exciting current, which can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. The relay calculates core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. Comparison study with the conventional differential relay with harmonic blocking is also shown. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

Y-$\Delta$ 변압기 보호용 수정 전류차동 계전기 (Modified Current Differential Relay for Y-$\Delta$ Transformer Protection)

  • 강용철;김은숙;이병은
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.9-13
    • /
    • 2004
  • This paper proposes a modified current differential relay for Y-$\Delta$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. The relay correctly discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

  • PDF

저장 탱크용 임시전력설비의 보호계전기 정정에 관한 연구 (A Study on the Correction of Protection Relay of Temporary Electric Power Installations for Storage Tank)

  • 손석금
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.562-567
    • /
    • 2020
  • 본 논문은 저장 탱크용 임시전력설비를 보호하기 위한 목적으로 특히 변압기를 감시하고 절연파괴 등과 같은 고장을 차단하고 보호하기 위한 보호계전기 정정에 관한 연구이다. 전력계통에 단락 또는 지락고장 등과 같은 이상이 발생하였을 때 이를 검출하여 고장이 발생한 기기 및 설비를 신속하게 차단하고 전력계통으로부터 분리하여 전력공급에 지장이 없도록 하여야 한다. 전력계통의 이상 상태를 빠르고 정확하게 감지할 수 있는 보호계전기의 정정이 중요하다. 또한 보호협조를 위해 고장종류와 고장의 원인을 정확히 적용한 고장전류 계산이 보호계전기 정정에 가장 중요한 요소이다. 저장 탱크용 임시전력설비 보호를 위해 적용하는 과전류계전기, 지락과전류계전기, 부족전압계전기, 지락과전압계전기 등이 보호협조가 가능하도록 보호계전기 정정 방법에 대해 연구하였다.

비접지 DC 급전계통에서 전류형 지락보호계전 방법 (Ground fault protective relaying schemes for DC traction power supply system)

  • 정상기;정락교;이성혁;김연수;조홍식
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.412-417
    • /
    • 2004
  • In urban rail transit systems, ground faults in the DC traction power supply system are currently detected by the potential relay, 64P. Though it detects the fault it cannot identify the faulted region and therefore the faulted region could not be isolated properly. Therefore it could cause a power loss of the trains running on the healthy regions and the safety of the passengers in the trains could be affected adversely. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. A current limiting device, called Device X, is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. One type of the relaying schemes is called directional and differential ground fault protective relay which uses the current differential scheme in detecting the fault and uses the permissive signal from neighboring substation to identify the faulted region correctly. The other is called ground over current protective relay. It is similar to the ordinary over current relay but it measures the ground current at the device X not at the power feeding line, and it compares the current variation value to the ground current in Device X to identify the correct faulted line. Though both type of the relays have pros and cons and can identify the faulted region correctly, the ground over current protective relaying scheme has more advantages than the other.

분산전원 연계 계통에서의 과전류계전기 오동작에 관한 연구 (A Study on the Over Current Relay Misoperation in Power System with Distributed Generations)

  • 박종일;이계병;박창현
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1705-1710
    • /
    • 2018
  • This paper deals with an analysis of the causes of over current relay(OCR) misoperation in power system with distributed generations(DG). In general, Y-D and Y-Y-D transformer connections are used for grid interconnection of DG. According to the interconnection guideline, the neutral point on Y side should be grounded. However, these transformer connections can lead to OCR misoperation as well as over current ground relay(OCGR) misoperation. Several researches have addressed the OCGR misoperation due to the interaction between transformer connections and zero-sequence voltage of distribution system. Recently, a misoperation of OCR at the point of DG interconnection to the utility system has been also reported. With increasing the interconnections of DG, such OCR as well as OCGR misoperations are expected to increase. In this paper, PSCAD/EMTDC modeling including DG interconnection transformer was performed and various case studies was carried out for identifying the cause of OCR misoperation.

Estimation of Delta Winding Current and Its Application to a Compensated-Current-Differential Relay for a Y-Δ Transformer

  • Kang, Yong-Cheol;Lee, Byung-Eun;Jin, En-Shu
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.255-263
    • /
    • 2010
  • The compensated-current-differential relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. Delta winding current is necessary to obtain the modified differential current for a $Y-\Delta$ transformer. This paper describes an estimation algorithm of the delta winding current and its application to a compensated-current-differential relay for a $Y-\Delta$ transformer. Prior to saturation, the core-loss current is calculated and used to modify the differential current. When the core first enters saturation, the initial value of the core flux is obtained by inserting the modified differential current into the magnetization curve. This flux value is used to derive the magnetizing current and consequently the modified differential current. The operating performance of the proposed relay was compared against a conventional current differential relay with harmonic blocking. Test results indicate that the proposed relay remained stable during severe magnetic inrush and over-excitation, and its operating time is significantly faster than a conventional relay. The relay is unaffected by the level of remanent flux and does not require an additional restraining or blocking signal to maintain stability. This paper concludes by implementing the proposed algorithm into a prototype relay based on a digital signal processor.

$Y-{\Delta}$ 변압기 보호용 수정 전류차동 계전기 (Modified Current Differential Relay for $Y-{\Delta}$ Transformer Protection)

  • 김은숙;강용철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권3호
    • /
    • pp.95-101
    • /
    • 2006
  • This paper proposes a modified current differential relay for $Y-{\Delta}$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation, because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay does not require additional restraining signal and thus cause time delay of the relay.