• 제목/요약/키워드: Ovarian granulosa cells

검색결과 112건 처리시간 0.031초

동결보존이 생쥐 난소 조직 내 Heat Shock Protein 90의 발현에 미치는 영향 (Effect of Cryopreservation on the Heat Shock Protein 90 Expression in Mouse Ovarian Tissue)

  • 이선희;박용석;염혜원;송견지;한상철;배인하
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제29권1호
    • /
    • pp.37-44
    • /
    • 2002
  • Objective : Heat shock protein family is related to protective mechanism of cells by environmental changes. This study was performed to evaluate the effect of cryopreservation on the heat shock protein 90 (Hsp90) expression in mouse ovarian tissue. Methods : Cryopreservation of mouse ovarian tissue was carried out by slow freezing method. The mRNA level of Hsp90 expression in both fresh and cryopreserved mouse ovarian tissue was analyzed by RT-PCR. The protein expression of Hsp90 was evaluated by Western blot analysis and immunohistochemistry. Results: The mRNA and protein of Hsp90 were expressed in both fresh and cryopreserved mouse ovarian tissue. The amount of Hsp90 mRNA was increased in cryopreserved ovarian tissue after 60 and 90 minutes after thawing and incubation. The amount of Hsp90 protein was increased in the cryopreserved ovarian tissue after 6 hours of the incubation in Western blot analysis. In immunohistochemical study, Hsp90 protein was localized in cytoplasm of oocytes and granulosa cells. Significant level of immunoreactive Hsp90 protein was detected in theca cells contrast to the weak expression in ovarian epithelial cells. Conclusion: This results showed the increase of Hsp90 expression in both mRNA and protein level in the cryopreserved mouse ovarian tissue. It can be suggested that Hsp90 may play a role in the protective or recovery mechanism against the cell damage during cryopreservaion.

Integrated transcriptomic analysis on small yellow follicles reveals that sosondowah ankyrin repeat domain family member A inhibits chicken follicle selection

  • Zhong, Conghao;Liu, Zemin;Qiao, Xibo;Kang, Li;Sun, Yi;Jiang, Yunliang
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1290-1302
    • /
    • 2021
  • Objective: Follicle selection is an important process in chicken egg laying. Among several small yellow (SY) follicles, the one exhibiting the highest expression of follicle stimulation hormone receptor (FSHR) will be selected to become a hierarchal follicle. The role of lncRNA, miRNA and other non-coding RNA in chicken follicle selection is unclear. Methods: In this study, the whole transcriptome sequencing of SY follicles with different expression levels of FSHR in Jining Bairi hens was performed, and the expression of 30 randomly selected mRNAs, lncRNAs and miRNAs was validated by quantitative real-time polymerase chain reaction. Preliminary studies and bioinformatics analysis were performed on the selected mRNA, lncRNA, miRNA and their target genes. The effect of identified gene was examined in the granulosa cells of chicken follicles. Results: Integrated transcriptomic analysis on chicken SY follicles differing in FSHR expression revealed 467 differentially expressed mRNA genes, 134 differentially expressed lncRNA genes and 34 differentially expressed miRNA genes, and sosondowah ankyrin repeat domain family member A (SOWAHA) was the common target gene of three miRNAs and one lncRNA. SOWAHA was mainly expressed in small white (SW) and SY follicles and was affected by follicle stimulation hormone (FSH) treatment in the granulosa cells. Knockdown of SOWAHA inhibited the expression of Wnt family member 4 (Wnt4) and steroidogenic acute regulatory protein (StAR) in the granulosa cells of prehierarchal follicles, while stimulated Wnt4 in hierarchal follicles. Overexpression of SOWAHA increased the expression of Wnt4 in the granulosa cells of prehierarchal follicles, decreased that of StAR and cytochrome P450 family 11 subfamily A member 1 in the granulosa cells of hierarchal follicles and inhibited the proliferation of granulosa cells. Conclusion: Integrated analysis of chicken SY follicle transcriptomes identified SOWAHA as a network gene that is affected by FSH in granulosa cells of ovarian follicles. SOWAHA affected the expression of genes involved in chicken follicle selection and inhibited the proliferation of granulosa cells, suggesting an inhibitory role in chicken follicle selection.

Regulation and 3 dimensional culture of tertiary follicle growth

  • Cheon, Yong-Pil
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제39권3호
    • /
    • pp.95-106
    • /
    • 2012
  • It has been revealed that multiple cohorts of tertiary follicles develop during some animal estrous cycle and the human menstrual cycle. To reach developmental competence, oocytes need the support of somatic cells. During embryogenesis, the primordial germ cells appear, travel to the gonadal rudiments, and form follicles. The female germ cells develop within the somatic cells of the ovary, granulosa cells, and theca cells. How the oocyte and follicle cells support each other has been seriously studied. The latest technologies in genes and proteins and genetic engineering have allowed us to collect a great deal of information about folliculogenesis. For example, a few web pages (http://www.ncbi.nlm. nih.gov; http://mrg.genetics.washington.edu) provide access to databases of genomes, sequences of transcriptomes, and various tools for analyzing and discovering genes important in ovarian development. Formation of the antrum (tertiary follicle) is the final phase of folliculogenesis and the transition from intraovarian to extraovian regulation. This final step coordinates with the hypothalamic-pituitary-ovarian axis. On the other hand, currently, follicle physiology is under intense investigation, as little is known about how to overcome women's ovarian problems or how to develop competent oocytes from in vitro follicle culture or transplantation. In this review, some of the known roles of hormones and some of the genes involved in tertiary follicle growth and the general characteristics of tertiary follicles are summarized. In addition, in vitro culture of tertiary follicles is also discussed as a study model and an assisted reproductive technology model.

Identification of Genes Regulated by PKC${\zeta}$ during Ovulation in the Rat

  • Seo, You-Mi;Jeon, Mee-Jin;Kim, Tae-Seong;Chun, Sang-Young
    • 대한생식의학회:학술대회논문집
    • /
    • 대한불임학회 2006년도 The 5th Biannual Meeting of Pacific Rim Society for Fertility and Sterility
    • /
    • pp.6-11
    • /
    • 2006
  • Our previous study demonstrates a rapid activation of atypical PKC${\zeta}$ by the ovulatory dose of LH/hCG. The present study was therefore designed to identify PKC${\zeta}$ regulated-genes in rat ovarian preovulatory granulosa cells. Preovulatory granulosa cells cultured in the presence of myristoylated PKC${\zeta}$ pseudosubstrate peptide were subjected to identify differentially expressed genes by using anneling control primer RT-PCR. As a result, among sixteen genes identified, six genes (testin, glypican-4, retrovirus SC1, connective growth factor, aminolevulinic acid synthase1 and serum- inducible kinase) were rapidly stimulated by hCG. Northern blot analysis demonstrated that all these genes were rapidly stimulated by hCG and declined thereafter. In situ hybridization analysis revealed the expression of these genes in granulosa cells of preovulatory follicles. The present study demonstrates time- and cell-specific expression of PKC${\zeta}$-regulated genes, and may imply that these genes play a specific role(s) during LH-induced ovulation.

  • PDF

생쥐의 난소 발달과정에서 Solute carrier family 유전자들의 발현양상 (The Expression of Solute carrier family members Genes in Mouse Ovarian Developments)

  • 오이균;박창은
    • 대한임상검사과학회지
    • /
    • 제49권1호
    • /
    • pp.40-47
    • /
    • 2017
  • 난포 내 난자를 둘러싸고 있는 과립세포는 난자를 위한 성장상태 및 난포의 발달에 중요하다. Solute carrier family 유전자는 스테로이드 호르몬, 다양한 약물, 몇몇 다른 기질을 유입시킨다. 연구에서 획득한 서로 다르게 발현하는 유전자들 (DEGs) 중 일부를 in situ hybridization을 통해 분석하였다. 분석한 결과 SLC23A3과 SLC39A10이 난소에서 높게 발현하였다. SLC39A10 유전자는 원시난포에서 높게 발현하였고, SLC23A3은 일차, 이차 난포에서 높게 발현하였다. 특히 성장하는 난포의 과립막 세포에서 발현하였다. SLC23A3과 SLC39A10은 원시난포와 일차난포에서 다르게 발현하는 것은 각 난포의 분리를 통해 좀 더 확인해야 할 것이다. 본 연구에서는 유전자 발현 정보를 통해 원시난포의 개시와 성장을 위한 전환에 관여하는 기전을 이해하는데 기초정보와 난포발달 촉진을 위한 난소기능부전의 기전을 규명하는데 정보를 제공할 것으로 기대된다.

Unusual malignant neoplasms of ovary in children: two cases report

  • Ghribi, Ali;Bouden, Aicha;Gasmi, Manef;Hamzaoui, Mourad
    • Clinical and Experimental Pediatrics
    • /
    • 제59권sup1호
    • /
    • pp.107-111
    • /
    • 2016
  • Sex cord tumors with annular tubules are known to originate from the sex cord of embryonic gonads that synthesize Sertoli cells, Leydig cells, granulosa cells, and theca cells of the ovarian stroma, while ovarian small cell carcinoma of the hypercalcemic type is a type of neuroendocrine tumor. Both these tumors are uncommon, potentially malignant neoplasms in children. We report the case of a sex cord tumor with annular tubules in an 11-year-old girl and a case of small cell carcinoma of the hypercalcemic type in a 10-year-old girl. We also discuss the prognosis and management of these tumors.

Ketamine과 Pentobarbitone이 생쥐 난자의 퇴화 및 과립세포의 자연세포사에 미치는 영향 (Effects of Ketamine and Pentobarbitone on Degeneration of Oocyte and Apoptosis of Granulosa Cells in Mouse Ovary)

  • 김종훈;윤용달
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제25권2호
    • /
    • pp.179-187
    • /
    • 1998
  • In mammal, lots of follicles start simultaneously their growth but only a few oocytes are ovulated in every sexual cycles. Most of matured and grown oocytes are destined to degenerate by atresia. However, the molecular and physiological mechanisms are not elucidated yet. The present study was designed to establish an induction method of follicular atresia with ketamine or pentobarbitone and evaluate the effect of these anesthetics on oocyte maturation and granulosa cell apoptosis of the mouse ovarian follicle. The percentages of degenerated oocyte and apoptotic granulosa cell in ketamine treated groups were significantly higher than that in controls (58.9% vs 33.5%, p<0.01, degeneration; 44.9% vs 26.6%, p<0.01, apotosis). Futhermore, it was revealed that the concentrations of progesterone in both groups were markedly higher than that in control. In cunclusion, it is considered that ketamine induce an atresia as pentobarbitone, and may be useful for inducing follicular atresia.

  • PDF

돼지의 과립막세포 종양 (Granulosa cell tumor in a sow)

  • 김형석;강상철;정지열;김현섭;김대용;김재훈
    • 대한수의학회지
    • /
    • 제48권3호
    • /
    • pp.323-326
    • /
    • 2008
  • A two-year-old mixed breed sow was requested to the Veterinary Pathology Laboratory of Cheju National University with a clinical signs of severe abdominal pain and sudden death. Grossly, there was severe hemorrhage in abdominal cavity. Most of internal parenchymas and subcutaneous muscle showed severe pale discoloration. Both ovaries were enlarged with oval to round protruding multilobular masses and dark red in color. And they were firm and contained multiple small cysts in their cut surface. Histopathologically, numerous neoplastic granulosa cells had spherical-to-oval, hyperchromatic nuclei and scant eosinophilic cytoplasms were distributed with follicular pattern in ovarian masses. And the typical Call-Exner bodies, distinctive microcavityies, were observed in the center of small neoplastic follicles. Based on the gross and histopathologic findings, this case was diagnosed as granulosa cell tumor. In our best knowledge, this is believed to be the first report of granulosa cell tumor in a sow in Korea.

생식샘자극호르몬분비호르몬이 사람 과립-황체화 세포의 스테로이드 생성과 세포자연사에 미치는 영향 (Effects of Gonadotropin Releasing Hormone on Steroidogenesis and Apoptosis of Human Granulosa-Lutein Cells)

  • 이효진;양현원
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권4호
    • /
    • pp.353-362
    • /
    • 2009
  • GnRH는 국부적으로 난소에서 합성되며, 난소내 과립 및 황체세포에 직접적으로 작용하여 난소의 기능을 조절하는 것으로 알려져 있으며, 특히, GnRH는 난소내 과립-황체화 세포의 세포자연사를 유도하는 것으로 보고하고 있다. 그러나 GnRH에 의한 세포자연사가 FSH에 의해 회복될 수 있는지는 명확히 밝혀져 있지 않다. 따라서 본 실험에서 난자 채취시 획득한 사람 과립-황체화 세포를 배양한 후 5, 50, 100 ng/$m\ell$ GnRH와 1 IU/$m\ell$ FSH를 처리하고 세포의 세포자연사 여부와 분비된 progesterone$(P_4)$과 estradiol$(E_2)$ 양의 변화를 조사하였다. DNA 분절화 분석과 TUNEL 방법으로 세포자연사를 평가한 결과, GnRH는 농도 의존적으로 과립-황체화 세포의 세포자연사를 증가시켰고, 특히 100 ng/$m\ell$ GnRH을 처리한 군에서 유의한 차이를 보이며 세포자연사 비율이 증가하였다. 또한 GnRH에 의한 세포자연사의 증가는 FSH에 의해 억제되는 것을 확인할 수 있었다. 화학발광면역 측정법을 이용하여 배양내 $P_4$$E_2$의 양을 측정한 결과, GnRH을 처리한 후 $E_2$의 양은 변화가 없었던 반면 $P_4$의 양은 감소하였다. 이러한 GnRH의 $P_4$ 합성 억제 효과는 세포자연사 결과 마찬가지로 FSH에 의해 회복되는 것을 확인할 수 있었다. 이상의 결과는 체외수정 및 배아이식 시술시 사용되고 있는 GnRH 작용제가 난소의 기능을 억제시킬 수 있을 것으로 보이나, 다량으로 투여되는 FSH에 의해 회복될 수 있음을 보여주고 있다. 이러한 실험 결과는 난소에 대한 GnRH의 생리적 기전을 이해하고 향후 새로운 과배란 유도 방법을 개발하는데 필요한 기초 자료로 사용될 수 있을 것으로 사료된다.

  • PDF

Effect of Follicular Fluid Proteins and Gonadotropins on Progesterone Secretion by Buffalo Granulosa Cells In vitro

  • Vinze, Mukesh;Sharma, M.K.;Singh, Dheer
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권11호
    • /
    • pp.1496-1500
    • /
    • 2004
  • In the mammalian ovary the follicular fluid contains proteins and peptides which play an important role in growth, development and maturation of oocytes. The gonadotropins and some other factors work synergistically and regulate ovarian functions. In the present study the effect of follicular fluid proteins (FFP) and gonadotropins on progesterone secretion by granulosa cells (GC) from buffalo ovary, was investigated during culture. The follicular fluid was collected from small (<5 mm), and medium (5-8 mm) follicles obtained from buffalo ovaries. The follicular fluid from medium follicles was fractionated with ammonium sulphate at 80% saturation. The precipitated protein fraction was further resolved in to minor (peaks I, III) and major (peak II) proteins using gel filtration (Sephadex G-200). The FFP from small follicles and major FFP (peak II) at a dose of 200 $\mu$g/well, significantly stimulated progesterone secretion by pooled GC (3${\times}10^{5}$ cells/2 ml medium/well). The minor FFP did not show any stimulatory effect. There was a significant increase in progesterone secretion by pooled GC in presence of FFP and LH (10 ng/well), however, FSH (20 ng/well) with FFP exhibited an inhibitory effect. The major FFP and gonadotropins were also studied for their effect on progesterone production by GC isolated from medium and large size follicles. The GC from medium follicles were more responsive to FSH and FFP whereas GC from large follicles exhibited enhanced progesterone secretion with LH and FFP. These results indicated that FFP have their own stimulatory effect and also act synergistically with gonadotropins. The significantly different response shown by GC, for steroid hormone secretion, is based on their stage of growth and differentiation. The purification and characterization of such steroidogenic proteins may help in elucidating their role in growth and differentiation of granulosa cells.