• 제목/요약/키워드: Output torque

검색결과 630건 처리시간 0.027초

5상 유도전동기 구동 시스템을 위한 인버터의 개방고장진단 방법 (Open Fault Diagnosis Method for Five-Phase Induction Motor Driving System)

  • 백승구;신혜웅;강성윤;박춘수;이교범
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.304-310
    • /
    • 2016
  • This paper proposes a fault diagnosis method for an open-fault in inverter driving five-phase induction motor. The five-phase induction motor has a high output torque and small torque ripple in comparison to three-phase. The best advantage of the five-phase induction motor is fault diagnosis and tolerant control using redundancy of phases. This paper uses an inverter as a power converter for driving a five-phase induction motor. If a switch of inverter occurs to the open-fault, this problem is the influence on the output current and output torque. To solve this problem, there is need of an accurate diagnosis and fault switch distinction. Therefore, this paper propose a fault detection method of the open-fault switches for the fault diagnosis. First, analyzing the pattern for the open-circuit fault of one phase. next, analyzing the pattern for the open-circuit fault of each inverter switches. Through the pattern analysis, It defines the scope of each of the failure switch. Thereafter, By using an algorithm that proposes to perform a fault diagnosis method. The proposed algorithm is verified from the experiment with the 1.5 kW five-phase induction motor.

연속 공정용 전동기 구동장치를 위한 통합형 토크 및 속도제어 알고리즘 (Integrated Torque and Speed Control Algorithm for Motor Drive System In Continuous Strip Processing Line)

  • 송승호
    • 전력전자학회논문지
    • /
    • 제7권2호
    • /
    • pp.186-193
    • /
    • 2002
  • 연속 공정 라인을 구성하는 롤러들의 속도뿐만 아니라 토크를 적적히 제어할 수 있는 통합형 제어기를 제안하였다. 여러 대의 롤러들이 동시에 가감속 할 때 발생하는 속도 편차는 소재의 장력을 유발하여 가공중인 제품의 품질에 나쁜 영향을 미치게 된다. 제안된 통합형 제어기를 사용하면 속도 기준값 편차나 속도제어 기 특성차이가 존재하더라도 토크 및 속도 기준값을 잘 추종하도록 제어하는 것이 가능하다 제안된 제어기는 가감속 등의 과도상태에는 속도 기준 값을 추종하는 것을 위주로 하고 정상 운전속도에서는 토크 기준값에 따라 제어함으로서 인접한 롤러간의 부하를 분담하도록 설계되었다 특히 제안된 제어기는 인접한 롤러의 제어 정보를 필요로 하지 않으므로 각각의 롤러 제어기 유닛에 쉽게 구현될 수 있다는 장점이 있다. 연속 공정 라인 모의 실험장치에서 제안된 제어기의 토크 및 속도 제어 특성을 비교 검토하였다.

Robust Observer Design for an Isolated Power System with Model Uncertainty using H-Norm

  • Goya, Tomonori;Senjyu, Tomonobu;Omine, Eitaro;Yona, Atsushi;Urasaki, Naomitsu;Funabashi, Toshihisa
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.498-504
    • /
    • 2010
  • The output power fluctuations of renewable energy power plants such as wind turbine generators and photovoltaic systems result in frequency deviations and terminal voltage fluctuations. Furthermore, these power fluctuations also affect the turbine shaftings of diesel generators and gas-turbine generators which are the main power generation systems on isolated islands. Therefore, it is important to achieve torsional torque suppression. Since the measurement of torsional torque is technically difficult, and there is an uncertainty in the mechanical constants of the shaft torsional system. This paper presents an estimation system that estimates torsional torque by using a developed $H_{\infty}$ observer. In addition to the above functions, the proposed shaft torque observer incorporates a parameter identification system that aims to improve the estimation accuracy. The simulation results validate the effectiveness of the proposed $H_{\infty}$ observer and the parameter identification.

Development and Analysis of a Two-Phase Excitation Switched Reluctance Motor with Novel Winding Distribution Used in Electric Vehicles

  • Zhu, Yueying;Yang, Chuantian;Yue, Yuan;Zhao, Chengwen;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2364-2375
    • /
    • 2018
  • Two-phase simultaneous excitation mode of the switched reluctance motor (SRM) has been shown to effectively improve the average torque output compared with traditional single-phase excitation mode. But the torque ripple of the two-phase excitation SRM with traditional winding distribution increases because of the inconsistent electromagnetic field. To reduce the torque ripple, a two-phase excitation 8/6 SRM with novel winding distribution is proposed in this paper. The static torques generated by various magnetic circuits are analyzed and obtained to verify the torque increase. Then the electromagnetic characteristics of the proposed SRM are investigated by the numerical calculation method in detail, including flux linkage, inductance, and torque. Finally, an experiment for measuring the SRM static electromagnetic characteristics and dynamic performance is designed and performed based on the novel mode, and the comparing results show that the proposed two-phase SRM is effective.

Improved FOC of IPMSM using Finite-state Model Predictive Current Control for EV

  • Won, Il-Kuen;Hwang, Jun-Ha;Kim, Do-Yun;Choo, Kyoung-Min;Lee, Soon-Ryung;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1851-1863
    • /
    • 2017
  • Interior permanent magnet synchronous motor (IPMSM) is most commonly used in the automotive industry as a traction motor for electric vehicle (EV). In electric vehicle, the torque output rapidly changes according to the operation of the accelerator and the braking of the driver. The transient torques are thus generated very frequently in accordance with the variable speed control of the driver. Therefore, in this paper, a method for improving the torque response in the transient states of IPMSM is proposed. In order to complement the disadvantages of the conventional PI current controller in the field oriented control (FOC), the finite-state model predictive current control and 2D-LUT is applied to improve the torque response at the torque transient period. Simulation and experiment results are given to verify the reliability of the proposed method.

Rigorous Design of a Switched Reluctance Motor Using a Hybrid Design Model

  • Gaing, Zwe-Lee;Hsiah, Yao-Yang;Tsai, Mi-Ching;Hsieh, Min-Fu;Tsai, Ming-Hsiao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.256-263
    • /
    • 2014
  • Torque ripple is a very essential index for evaluating the effectiveness of a switched reluctance motor (SRM). Many common design strategies for reducing torque ripples of a SRM are changing the excitation trigger angle of stator windings, delaying the cut-off time of winding excitation, adjusting the ratio of arc angle between stator and rotor, and changing the geometric shape of rotor. However, the output torque or the efficiency of the SRM may drop as the above design strategies are solely adopted. In this paper, a hybrid design model which is obtained by the Taguchi Method for optimally designing a SRM with lower torque ripple and higher efficiency is presented. A 12S/8P motor is taken as a study case, and the 3D finite element method (FEM) is applied to analyze the characteristics of the motor and optimize the design process. The results have shown that the proposed method can achieve the design goal of obtaining a high-performance SRM for light electric vehicle applications.

유도전동기의 최대토크 제어를 위한 인공지능 PI 제어기 개발 (Development of Artificial Intelligent PI controller for Maximum Torque Control of Induction Motor)

  • 강성준;고재섭;최정식;백정우;장미금;문주희;정동화
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.587-588
    • /
    • 2010
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed using artificial intelligent PI(AIPI) controller. Also, this paper is proposed control of maximum torque per ampere(MTPA) of induction motor. The performance of the proposed induction motor drive with maximum torque control using AIPI controller is verified by analysis results at dynamic operation conditions.

  • PDF

비틀림 자이로휠을 이용한 인버티드 펜듈럼의 제어 (Control of Inverted Pendulum using Twisted Gyro-Wheel)

  • 황정문;표범식;김정한
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1181-1188
    • /
    • 2011
  • A control system for stabilizing a small robot or inverted pendulum using twisted gyro wheel is proposed. Conventional stabilizer using inertial wheel employs action-reaction force/torque to control a pendulum, which can generate relatively small torque and short period of output. In this paper, a novel actuation method using twisted gyro torque in 3-dimentional space was proposed to stabilizing a pendulum by twisting the assembly including a rotating gyro wheel. In addition, two special control functions for this type of twisted gyro wheel were designed. One is the function of self-adjusting the mass center of the robot and the other is the torque reloading configuration for continuous torque generation. The proposed system was verified by experimental result and simulation. The designed twisted gyro wheel control system can be easily packed in a small size module and installed in a humanoid robot or inverted pendulum type mechanism.

매입형 영구자석 동기전동기의 최적 전류각 제어 (Optimal current angle control method of interior permanent magnet Synchronous Motors)

  • 김명찬;김종구;홍순찬
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.352-357
    • /
    • 1996
  • Recently, Permanent Magnet Synchronous Motor(PMSM) drives are widely used for industrial applications due to its high efficiency and high power factor control strategy. PMSM generally have two classifications such as the SPMSM(Surface Permanent Magnet Synchronous Motors) and IPMSM(Inter Permanent Magnet Synchronous Motors). IPMSA has economical merits over SPMSM in higher speed range, mechanical robustness, and higher power rate by the geometric difference. The maximum torque operation in IPMSM is realized by the current angle control which is to utilize additional reluctance torque due to a rotor saliency. In traction, spindle and compressor drives, constant power operation with higher speed range are desirable. This is simply achieved in the DC motor drives by the reduction of the field current as the speed is increased. However, in the PMSM, direct control of the magnet flux is not available. The airgap flux can be weakened by the appropriate current angle control to demagnetize. In this paper, the control method of optimal current vector in IPMSM is described in order to obtain the maximum torque or maximum output with the speed and load variations. The applied algorithm is realized by the proto system with torque and speed control Experimental results show this approach is satisfied for the high performance servo applications. (author). 6 refs., 9 figs., 1 tab.

  • PDF

직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘 (A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.