• Title/Summary/Keyword: Output power regulation

Search Result 326, Processing Time 0.038 seconds

The optimum specifications and design of distributive transformers (배전용 변압기의 합리적인 사양과 그 설계법)

  • 이승원
    • 전기의세계
    • /
    • v.14 no.4
    • /
    • pp.8-17
    • /
    • 1965
  • Firstly, this study has analyzed the following factors affecting the optimum specifications and design of distributive transformers: 1. Facilities installation cost per unit power output. 2. Facilities operating & maintenance cost per unit power output. 3. Production cost per unit power output. 4. Load factor. 5. Loss factor. Secondly, it has clarified the relations between the following factors and the specifications and design of distributive transformers; 1. No-load loss., 2. Load loss., 3. Voltage regulation., 4. Exciting current. Finally, it has determined the method of the most economic design for the transformers using the above factors and relations, and, for optimum the illustrative purpose, suggested their optimum specifications, way of evaluation, and merits by means of typical example.

  • PDF

Step-up and Step-down Asymmetrical 24-Pulse Autotransformer Rectifier

  • Zhang, Lu;Ge, Hong-juan;Jiang, Fan;Yang, Guang;Lin, Yi
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1536-1544
    • /
    • 2018
  • The existing 24-pulse autotransformer rectifier unit (ATRU) needs interphase reactors for parallel work of the rectifier bridges, and its output voltage cannot be regulated. Aiming at these problems, a step-up and step-down asymmetrical 24-pulse ATRU is proposed in this paper. The connections and turns ratios among transformer windings are well designed. In addition, a 15-degree phase difference is formed between two of the 24 voltage vectors produced by the transformer, which makes the four rectifier bridge groups produce a 24-pulse DC voltage without interphase reactors. Meanwhile, by adding extended winding to each phase of the transformer, wide-range regulation of the ATRU output voltage can be realized, and the reasonable voltage regulation range is between 0.2 and 1.6. The superposition of the voltage vectors and the principle of the voltage regulation are analyzed in detail. Furthermore, the turns ratio of the windings, winding current, output voltage, and kilovolt-ampere rating are all derived. Finally, the simulations and experiments are carried out, and the correctness of the principle and theoretical analysis of the new 24-pulse ATRU are verified.

A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method (고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터)

  • Kim, Hong-Shin;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

Design of an Adaptive Fuzzy Controller for Power System Stabilization

  • Park, Young-Hwan;Park, Jang-Hyun;Yoon, Tae-Woong;Park, Gwi-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.432-437
    • /
    • 1998
  • Power systems have uncertain dynamics due to a variety of effects such as lightning, severe storms and equipment failures. The variation of the effective reactance of a transmission line due to a fault is an example of uncertainty in power system dynamics. Hence, a robust controller to cope with these uncertainties is needed. Recently fuzzy controllers have become quite popular for robust control due to its capability of dealing with unstructured uncertainty. Thus in this paper we design an adaptive fuzzy controller using an input-output linearization approach for the transient stabilization and voltage regulation of a power system under a sudden fault. Simulation results show that satisfactory performance is achieved by the proposed controller.

  • PDF

Single Stage PFC Flyback Converter Using Top Switch (Top 스위치를 이용한 단일 전력단 역률개선 플라이백 컨버터)

  • Lim Chang Seob;Kwon Soon Kurl;Lee Hyun Woo;Kim Eun Soo
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.669-672
    • /
    • 2001
  • Generally, previous converter is divided into two categories to get high power factor and good output regulation. These two categories can be combined a category with a main switch. These converter is called Single Stage PFC Converter. This approach has good electrical characteristics of high power factor and fast output voltage regulation. The cost and size are important factor to design the converter in low power system. Even single stage can reduce the size and cost, but this approach needs to have additional circuit like control, PWM circuit. To improve these demerits, Top switch is one of good choice In reduce and size in low power single stage converter. Because it has the ability of current limit, thermal protection, oscillator, control circuit as well as a main switch ability.

  • PDF

Analysis of Cross-Regulation Characteristics for Multi-Output LLC Resonant Converter (다중출력 LLC 공진 컨버터의 Cross-regulation 특성 분석)

  • Jeong, Jin-Woo;Lim, Jeong-Gyu;Chung, Se-Kyo;Kim, Jong-Hae;Oh, Dong-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.151-152
    • /
    • 2011
  • This paper describes a cross-regulation characteristics of a multi-output LLC resonant converter widely used in consumer electronics. The output characteristics of the multi-output LLC converter is derived from the assumption that the current and voltage to flow through the resonant network is sinusoidal and the duty loss is investigated. The simulation results are provided to verify the theoretic results.

  • PDF

An Integrated Single-Stage Zero Current Switched Quasi-Resonant Power Factor Correction Converter with Active Clamp Circuit (능동 클램프 회로를 적용한 단상 ZCS 공진형 역률개선 컨버터)

  • 이준영;문건우;고관본;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.626-630
    • /
    • 1999
  • A new integrated single-stage zero current switched(ZCS) quasi-resonant converter (QRC) for the power factor correction(PFC) converter is introduced in this paper. The power factor correction can be achieved by the discontinuous conduction mode(DCM) operation of an input current. The proposed converter has the characteristics of the good power factor, low line current harmonics, and tight output regulation. Furthermore, the ringing effect due to the output capacitance of the main switch can be eliminated by use of active clamp circuit.

  • PDF

Real and Reactive power coordination control of Distributed Generation System for Distribution Voltage Regulation (배전계통 적정전압 유지를 위한 유효 무효전력 협조제어)

  • Kim, Tae-Eung;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.153-155
    • /
    • 2000
  • This paper reveals some correlations between LDC voltage control method and the output of DGS, and also presents a method for determining the amounts of real, reactive Power of DGS for proper voltage regulation of power distribution system with LDC. Proposed method has been applied to a 22.9 kV class power distribution system, and those results show that the distribution system voltage profile is improved.

  • PDF

Innovative Model-Based PID Control Design for Bus Voltage Regulation with STATCOM in Multi-Machine Power Systems (STATCOM을 사용한 다기 전력 계통의 버스 전압 조절을 위한 모델 기반 PID 제어기 설계)

  • Kim, Seok-Kyoon;Lee, Young Il;Song, Hwachang;Kim, Jung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.299-305
    • /
    • 2013
  • The complexity and severe nonlinearity of multi-machine power systems make it difficult to design a control input for voltage regulation using modern control theory. This paper presents a model-based PID control scheme for the regulation of the bus voltage to a desired value. To this end, a fourth-order linear system is constructed using input and output data obtained using the TSAT (Transient Security Assessment Tool); the input is assumed to be applied to the grid through the STATCOM (STATic synchronous COMpensator) and the output from the grid is a bus voltage. On the basis of the model, it is identified as to which open-loop poles of the system make the response to a step input oscillatory. To reduce this oscillatory response effectively, a model-based PID control is designed in such a way that the oscillatory poles are no longer problematic in the closed loop. Simulation results show that the proposed PID control dampens the response effectively.

DSP-Based Digital Controller for Multi-Phase Synchronous Buck Converters

  • Kim, Jung-Hoon;Lim, Jeong-Gyu;Chung, Se-Kyo;Song, Yu-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.410-417
    • /
    • 2009
  • This paper represents a design and implementation of a digital controller for a multi-phase synchronous buck converter (SBC) using a digital signal processor (DSP). The multi-phase SBC has generally been used for a voltage regulation module (VRM) of a microprocessor because of its high current handling capability at a low output voltage. The VRM requires high control performance of tight output regulation, high slew rate, and load sharing capability of multiple converters. In order to achieve these requirements, the design and implementation of a digital control system for a multi-phase SBC are presented in this paper. The digital PWM generation, current sensing, and voltage and current controller using a DSP TMS320F2812 are considered. The experimental results are provided to show the validity of the implemented digital control system.