• Title/Summary/Keyword: Output growth

Search Result 504, Processing Time 0.031 seconds

Performance Evaluation of SSD Cache Based on DM-Cache (DM-Cache를 이용해 구현한 SSD 캐시의 성능 평가)

  • Lee, Jaemyoun;Kang, Kyungtae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.11
    • /
    • pp.409-418
    • /
    • 2014
  • The amount of data located in storage servers has dramatically increased with the growth in cloud and social networking services. Storage systems with very large capacities may suffer from poor reliability and long latency, problems which can be addressed by the use of a hybrid disk, in which mechanical and flash memory storage are combined. The Linux-based SSD(solid-state disk) uses a caching technique based on the DM-cache utility. We assess the limitations of DM-cache by evaluating its performance in diverse environments, and identify problems with the caching policy that it operates in response to various commands. This policy is effective in reducing latency when Linux is running in native mode; but when Linux is installed as a guest operating systems on a virtual machine, the overhead incurred by caching actually reduces performance.

Empirical Analysis on the Estimation of Total Factor Productivity and its Determinants in the Korean Manufacturing and Service Industries (한국의 총요소생산성 추정과 생산성 결정요인에 관한 실증연구)

  • Zhu, Yan Hua
    • International Area Studies Review
    • /
    • v.22 no.4
    • /
    • pp.19-35
    • /
    • 2018
  • This paper is to estimate the total factor productivity(TFP) in the Korean manufacturing and service industries during the period 1975:1-2016:4 using the stochastic frontier analysis model. In order to analyze the determinants for the total factor productivity the paper estimates the industry-specific determinant elasticities of TFP using the autoregressive distributed model. The industry-specific determinants, which reflect the industrial structure and properties include markup, the ratio of capital to labor(KL), and the ratio of foreign intermediate goods (FIG) to industrial output. The average value for total factor productivity growth was estimated to be 0.0199 in manufacturing and 0.0063 in the service industry. The markup and KL elasticities of TFP were estimated to be 2.481 and 0.651 in manufacturing respectively and -1.403 and 0.042 in the service industry respectively. The empirical results suggest that the industrial markup and the ratio of capital to labor have had decisive effects on the changes in the total factor productivity in the Korean manufacturing and service industries during the period 1975:1-2016:4.

Development of a Data Acquisition System for the Long-term Monitoring of Plum (Japanese apricot) Farm Environment and Soil

  • Akhter, Tangina;Ali, Mohammod;Cha, Jaeyoon;Park, Seong-Jin;Jang, Gyeang;Yang, Kyu-Won;Kim, Hyuck-Joo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.426-439
    • /
    • 2018
  • Purpose: To continuously monitor soil and climatic properties, a data acquisition system (DAQ) was developed and tested in plum farms (Gyewol-ri and Haechang-ri, Suncheon, Korea). Methods: The DAQ consisted of a Raspberry-Pi processor, a modem, and an ADC board with multiple sensors (soil moisture content (SEN0193), soil temperature (DS18B20), climatic temperature and humidity (DHT22), and rainfall gauge (TR-525M)). In the laboratory, various tests were conducted to calibrate SEN0193 at different soil moistures, soil temperatures, depths, and bulk densities. For performance comparison of the SEN0193 sensor, two commercial moisture sensors (SMS-BTA and WT-1000B) were tested in the field. The collected field data in Raspberry-Pi were transmitted and stored on a web server database through a commercial communications wireless network. Results: In laboratory tests, it was found that the SEN0193 sensor voltage reading increased significantly with an increase in soil bulk density. A linear calibration equation was developed between voltage and soil moisture content depending on the farm soil bulk density. In field tests, the SEN0193 sensor showed linearity (R = 0.76 and 0.73) between output voltage and moisture content; however, the other two sensors showed no linearity, indicating that site-specific calibration is important for accurate sensing. In the long-term monitoring results, it was observed that the measured climate temperature was almost the same as website information. Soil temperature information was higher than the values measured by DS18B20 during spring and summer. However, the local rainfall measured using TR 525M was significantly different from the values on the website. Conclusion: Based on the test results obtained using the developed monitoring system, it is thought that the measurement of various parameters using one device would be helpful in monitoring plum growth. Field data from the local farm monitoring system can be coupled with website information from the weather station and used more efficiently.

The agricultural production forecasting method in protected horticulture using artificial neural networks (인공신경망을 이용한 시설원예 농산물 생산량 예측 방안)

  • Min, J.H.;Huh, M.Y.;Park, J.Y.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.485-488
    • /
    • 2016
  • The level of domestic greenhouse complex environmental control technology is a hardware-oriented automation steps that mechanically control the environments of greenhouse, such as temperature, humidity and $CO_2$ through the technology of cultivation and consulting experts. This automation brings simple effects such as labor saving. However, in order to substantially improve the output and quality of agricultural products, it is essential to track the growth and physiological condition of the plant and accordingly control the environments of greenhouse through a software-based complex environmental control technology for controlling the optimum environment in real time. Therefore, this paper is a part of general methods on the greenhouse complex environmental control technology. and presents a horticulture production forecasting methods using artificial neural networks through the analysis of big data systems of smart farm performed in our country and artificial neural network technology trends.

  • PDF

Effects of a tunnel ventilation system within the tie-stall barn environment upon the productivity of dairy cattle during the winter season

  • Sarentonglaga, Borjigin;Sugiyama, Tatsuhiro;Fukumori, Rika;Nagao, Yoshikazu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.748-756
    • /
    • 2019
  • Objective: The objective of this study was to examine the effect of using a tunnel ventilation system within the dairy barn environment upon the productivity of dairy cows during the winter season. Methods: The study was performed at the University Farm, Faculty of Agriculture, Utsunomiya University. Twenty-one Holstein dairy cows (5 heifers and 16 multiparous) were enclosed in a stall barn. Unventilated (UV) and tunnel-ventilated (TV) was operated by turns every other week, and a number of key parameters were measured in the barn, including tunnel ventilation output, temperature, relative humidity, gas concentrations (oxygen [$O_2$], carbon dioxide [$CO_2$], and ammonia [$NH_3$]). Also, skin and rectal temperature, respiratory rate, blood gas concentrations, and bacterial count were measured from nipple attachments on ten cows. The amount of fodder left uneaten, and general components and somatic cell count of the milk were measured. Results: As for our dairy barn environment, air temperature dropped significantly with the passage of time with TV. Humidity was significantly higher with TV at 0600 h compared to UV, while $CO_2$ and $NH_3$ concentrations with UV were significantly higher than with TV at 0000 h and 0600 h. Skin temperature was significantly lower with TV compared to UV at 0000 h and 0600 h. Respiratory rate was also significantly lower at 0600 h with TV than with UV. Bacterial count for the nipple attachments was significantly lower with TV than with UV at 0600 h. The amount of leftover fodder was significantly less with TV in comparison with UV. Conclusion: Our results suggest that a TV system in the winter barn results in environmental improvements, such as reductions in unfavorable gas concentrations and bacterial growth. Consequently, it is expected that barns utilizing a TV system will be beneficial for both animal health and production.

Mechanical Properties and Fabrication of Nanostructured Mg2SiO4-MgAl2O4 Composites by High-Frequency Induction Heated Combustion (기계적 활성화된 분말로부터 고주파유도 가열 연소합성에 의한 나노구조 Mg2SiO4-MgAl2O4 복합재료 제조 및 기계적 특성)

  • Shon, In-Jin;Kang, Hyun-Su;Hong, Kyung-Tae;Doh, Jung-Mann;Yoon, Jin-Kook
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.614-618
    • /
    • 2011
  • Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high energy ball milling. The rapid sintering of nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites was investigated by a high-frequency induction heating sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Highly dense nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites were produced with simultaneous application of 80MPa pressure and induced output current of total power capacity (15 kW) within 2min. The sintering behavior, gain size and mechanical properties of $MgAl_2O_4-Mg_2SiO_4$ composites were investigated.

A Study on Soil Moisture Estimates Performance Using Various Land Surface Models (다양한 지표모형을 활용한 토양수분 예측 성능 평가 연구)

  • Jang, Ye-Geun;Sin, Seoung-Hun;Lee, Tae-Hwa;Jang, Won-Seok;Shin, Yong-Chul;Jang, Keun-Chang;Chun, Jung-Hwa;Kim, Jong-Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.79-89
    • /
    • 2022
  • Soil moisture is significantly related to crop growth and plays an important role in irrigation management. To predict soil moisture, various process-based model has been developed and used in the world. Various models (Land surface model) may have different performance depending on the model parameters and structures that causes the different model output for the same modeling condition. In this study, the three land surface models (Noah Land Surface Model, Soil Water Atmosphere Plant, Community Land Model) were used to compare the model performance (soil moisture prediction) and develop the multi-model simulation. At first, the genetic algorithm was used to estimate the optimal soil parameters for each model, and the parameters were used to predict soil moisture in the study area. Then, we used the multi-model approach based on Bayesian model averaging (BMA). The results derived from this approach showed a better match to the measurements than the results from the original single land surface model. In addition, identifying the strengths and weaknesses of the single model and utilizing multi-model methods can help to increase the accuracy of soil moisture prediction.

The Evaluation Research of Weihai Fishery Production Efficiency Based on DEA Model (基于DEA模型的威海渔业生产效率评价研究)

  • Wu, Yinuo
    • Journal of East Asia Management
    • /
    • v.3 no.1
    • /
    • pp.11-23
    • /
    • 2022
  • Under the circumstances of China's slower economic growth, the first document ofthe central committee of the CPC continue to focus on "three agricultures" problems, agriculture play a basic role on China's economic. Since 2007, the first document directly stresses the important role of agricultural and fisheries every year. Central Government Working Report of 2015 also stresses that under the new normal of economy, it is important to improve quality and efficiency of agriculture. Agricultural focus going forward will be on improving capacity of competitiveness, innovation and sustainable development.The fishery as an important part of agriculture plays a vital role in the protection of national food security, the prosperity of the rural economy and the optimization of national food structure. However, the situation faced on accelerating the speed of Chinese fisheries is still grim. As an important fishery breeding city in my country, Weihai has achieved remarkable results in the development of fisheries. Based on the input-output indicators of Weihai City from 2010 to 2020, this article uses the DEA model method to conduct a comprehensive analysis of the factors affecting the fishery production efficiency in Weihai City. This paper calculates the two stages of comprehensive efficiency, pure technical efficiency and scale efficiency, and comprehensive compares the two stages. The research results show that: From 2010 to 2020, the average comprehensive technical efficiency of Weihai fishery was 0.928, the average scale efficiency was 0.963, and the average pure technical efficiency was 0.963. The comprehensive technical efficiency of Weihai fishery production showed an upward and downward trend, the pure technical efficiency showed a downward and then upward trend, and the pure technical efficiency showed a fluctuating trend.

Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation (리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구)

  • Yoon, Hyun-Ki;Ha, Sang-Hyeon;Lee, Jaein
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

Research for the Selection of Agricultural environment in Papua New Guinea (파푸아뉴기니 농업 환경 기초조사)

  • Chang, Kwang Jin;Koo, Hyun Jung;Choi, Jang-Nam
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.183-204
    • /
    • 2015
  • Papua New Guinea, birthplace of the South Pacific, is a natural nation which have potential of increasing crops output because it has optimum condition for crop growth as tropical rain forest climate under hot and humid climate. Farming village of Papua New Guinea want to produce crops for create income beyond the self-sufficiency. It needs the technological transfer such as irrigation facilities and understanding of agricultural weather condition for good crops production. In particular, it needs a improvement through pH, EC, ORP for make optimum soil condition and it need the standardization production and farm products what the consumer wants. Internationally technical cooperation is needed for agricultural development of Papua New Guinea and maintenance of international cooperation will help for economic development between the two countries. In particular, basic environment research for agricultural development of Papua New Guinea is expected to play a larger role of technical cooperation of agriculture.