• Title/Summary/Keyword: Output energy

Search Result 2,824, Processing Time 0.043 seconds

Development of Productivity Prediction Model according to Choke Size and Gas Injection Rate by using ANN(Artificial Neural Network) at Oil Producer (오일 생산정에서 쵸크사이즈와 가스주입량에 따른 생산성 예측 인공신경망 모델 개발)

  • Han, Dong-kwon;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.90-103
    • /
    • 2018
  • This paper presents the development of two ANN models which can predict an optimum production rate by controlling choke size in oil well, and gas injection rate in gas-lift well. The input data was solution gas-oil ratio, water cut, reservoir pressure, and choke size or gas injection rate. The output data was wellhead pressure and production rate. Firstly, a range of each parameters was decided by conducting sensitive analysis of input data for onshore oil well. In addition, 1,715 sets training data for choke size decision model and 1,225 sets for gas injection rate decision model were generated by nodal analysis. From the results of comparing between the nodal analysis and the ANN on the same reservoir system showed that the correlation factors were very high(>0.99). Mean absolute error of wellhead pressure and oil production rate was 0.55%, 1.05% with the choke size model, respectively. And the gas injection rate model showed the errors of 1.23%, 2.67%. It was found that the developed models had been highly accurate.

PV Inverter Operation according to DC Capacitor Aging (직류 커패시터 노후화에 따른 PV 인버터 동작)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.149-155
    • /
    • 2023
  • Photovoltaic power generation is the most familiar power generation facility among new and renewable energies, and its supply began to expand about 10 years ago, and at this point, interest in solutions and technologies for system maintenance management is increasing. In particular, it is necessary to take measures to maximize the overall efficiency of the solar power generation system, whether or not there is an abnormality in the solar power generation system, and when to replace parts. The PV inverter, one element of the photovoltaic power generation system, is a power conversion system that relies on power switching devices, and DC-Link capacitors are used according to the configuration of DC/DC converters and DC-AC inverters. These DC capacitors also affect system safety (Safety) through renewable energy facilities due to the decrease in power generation of PV inverters, power loss, and increase in harmonics (THD, total distortion of AC output current) due to aging and deterioration due to long-term use. factors can be analyzed. Therefore, in this paper, the PV inverter operating characteristics according to the DC capacitor capacity state currently operating in the photovoltaic power generation system were considered, and research contents were proposed to secure the safety and reliability of renewable energy facilities.

The Development of 10 kW Class Tidal Power Generator System - Focusing on Field Experiments with Pipelines (10 kW급 조력발전장치 개발 - 관수로 현장실험을 중심으로)

  • HyukJin Choi;Nam-Sun Oh;Dong-Hui Ko;Shin Taek Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Along with the growing interest in renewable energy development, Korea's west coast is one of the favorable regions for tidal power. Tidal power using tidal barrages that work like hydroelectric dams is a representative method of tidal power through long-term operation, but the promotion of tidal power projects is being delayed or stopped due to impacts on ecological changes, reproduction, water column processes and hydrology. In order to reduce the high construction cost and environmental cost problems caused by tidal power using tidal barrages, in this study, field experiments were conducted to develop and verify the performance of tidal power generation devices applicable to sea areas where dykes are already installed. As a result of conducting five cases of experiments using two water tanks, pipe lines, open channels, and water turbine and generator, the possibility of developing a power generation system capable of generating more than 10 kW output and more than 60% efficiency were confirmed. The results of this study can be used for small-scale tidal power by utilizing the existing dykes of the west coast.

Deep-Learning Seismic Inversion using Laplace-domain wavefields (라플라스 영역 파동장을 이용한 딥러닝 탄성파 역산)

  • Jun Hyeon Jo;Wansoo Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.84-93
    • /
    • 2023
  • The supervised learning-based deep-learning seismic inversion techniques have demonstrated successful performance in synthetic data examples targeting small-scale areas. The supervised learning-based deep-learning seismic inversion uses time-domain wavefields as input and subsurface velocity models as output. Because the time-domain wavefields contain various types of wave information, the data size is considerably large. Therefore, research applying supervised learning-based deep-learning seismic inversion trained with a significant amount of field-scale data has not yet been conducted. In this study, we predict subsurface velocity models using Laplace-domain wavefields as input instead of time-domain wavefields to apply a supervised learning-based deep-learning seismic inversion technique to field-scale data. Using Laplace-domain wavefields instead of time-domain wavefields significantly reduces the size of the input data, thereby accelerating the neural network training, although the resolution of the results is reduced. Additionally, a large grid interval can be used to efficiently predict the velocity model of the field data size, and the results obtained can be used as the initial model for subsequent inversions. The neural network is trained using only synthetic data by generating a massive synthetic velocity model and Laplace-domain wavefields of the same size as the field-scale data. In addition, we adopt a towed-streamer acquisition geometry to simulate a marine seismic survey. Testing the trained network on numerical examples using the test data and a benchmark model yielded appropriate background velocity models.

Identification of the Environmentally Problematic Input/Environmental Emissions and Selection of the Optimum End-of-pipe Treatment Technologies of the Cement Manufacturing Process (시멘트 제조공정의 환경적 취약 투입물/환경오염물 파악 및 최적종말처리 공정 선정)

  • Lee, Joo-Young;Kim, Yoon-Ha;Lee, Kun-Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.449-455
    • /
    • 2017
  • Process input data including material and energy, process output data including product, co-product and its environmental emissions of the reference and target processes were collected and analyzed to evaluate the process performance. Environmentally problematic input/environmental emissions of the manufacturing processes were identified using these data. Significant process inputs contributing to each of the environmental emissions were identified using multiple regression analysis between the process inputs and environmental emissions. Optimum combination of the end-of-pipe technologies for treating the environmental emissions considering economic aspects was made using the linear programming technique. The cement manufacturing processes in Korea and the EU producing same type of cement were chosen for the case study. Environmentally problematic input/environmental emissions of the domestic cement manufacturing processes include coal, dust, and $SO_x$. Multiple regression analysis among the process inputs and environmental emissions revealed that $CO_2$ emission was influenced most by coal, followed by the input raw materials and gypsum. $SO_x$ emission was influenced by coal, and dust emission by gypsum followed by raw material. Optimization of the end-of-pipe technologies treating dust showed that a combination of 100% of the electro precipitator and 2.4% of the fiber filter gives the lowest cost. The $SO_x$ case showed that a combination of 100% of the dry addition process and 25.88% of the wet scrubber gives the lowest cost. Salient feature of this research is that it proposed a method for identifying environmentally problematic input/environmental emissions of the manufacturing processes, in particular, cement manufacturing process. Another feature is that it showed a method for selecting the optimum combination of the end-of-pipe treatment technologies.

Assessment of BiomassProduction and Potential Energy of Major Bioenergy Crops (바이오에너지 작물의 에너지자원으로서 잠재적 가치 평가)

  • Ko, Byong-Gu;Kang, Kee-Kyung;Lee, Deog-Bae;Kim, Gun-Yeob;Hong, Suk-Young;Kim, Min-Kyeong;So, Kyu-Ho;Seo, Myung-Chul;Seo, Jong-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.486-491
    • /
    • 2009
  • To evaluate the potential value of the major bioenergy crops which are wheat, canola, barley, corn, and sweet potato in Korea, we investigated the production of biomass and calorific value of crops, and also compared input and output factors among bioenergy crops during the cultivation period. There was difference between the biomass values in Agricultural and Forestry statistical yearbook(2006) and the one investigated in this experiment, also there was difference in crops and in species. Among the crops investigated, sweet potato(Jinhongmi, Yulmi) was shown the highest amount of biomass production and corn(Gangdaok) was shown the highest amount of the total biomass which is the total aboveground biomass at harvest. Oilseed canola which is presently a major source of bio-diesel had highest calorific value as $6,673{\sim}6,725cal\;g^{-1}$. Wheat and corn grains which are source of bio-ethanol were in the range of $3,879{\sim}4,317cal\;g^{-1}$. Gangdaok(Corn) produce the highest total calorific value in unit cultivating area among the crops as $8,263kcal\;m^{-2}$. Corn was shown that the input and output factors were the highest level among bioenergy crops during cultivation period. Sweet potato also was shown that output factor was the highest level though its input factors were average level. It is needed to be investigated more crops for collecting the higher potential value of bioenergy production further considering small land area and its effective utilization in Korea.

Analysis of CO2 Emission Intensity per Industry using the Input-Output Tables 2003 (산업연관표(2003년)를 활용한 산업별 CO2 배출 원단위 분석)

  • Park, Pil-Ju;Kim, Mann-Young;Yi, Il-Seuk
    • Environmental and Resource Economics Review
    • /
    • v.18 no.2
    • /
    • pp.279-309
    • /
    • 2009
  • Greenhouse gas emissions should be precisely forecast to reduce the emissions from industrial production processes. This study calculated the direct and indirect $CO_2$ emission intensities of 401 industries using the Input-Output tables 2003 and statistical data on the amount of energy use. This study had some limitations in drawing study findings because overseas data were used given the lack of domestic data. Other limiting factors included the oil distribution problems in the oil refinery sector, re-review of carbon neutral, and insufficient consideration of waste treatment. Nonetheless, this study is very meaningful since the direct and indirect $CO_2$ emission intensities of 401 industries were calculated. Specifically, this study considered from the zero-waste perspective the effects of waste, which attract interest worldwide since coke gas and gas from the steel industry are obtained as byproducts for the first time in Korea. According to the results of the analysis of $CO_2$ emission intensity per industry, typical industries whose indirect $CO_2$ emission intensity is high include crude steel making, Remicon, steel wire rods & track rail, cast iron, and iron reinforcing rods & bar steel. These industries produce products using the raw materials produced in the industrial sector whose $CO_2$ emission intensity is high. The representative industries whose direct $CO_2$ emission intensity is high include cement, pig iron, lime & plaster products, andcoal-based compounds. These industries extract raw ore from nature and refine them into raw materials that are useful in other industries. The findings in this study can be effectively used for the following case: estimation of target $CO_2$ emission reduction level reflecting each industrial sector's characteristics, calculation of potential emission reduction of each policy to reduce $CO_2$ emissions, identification of a firm's $CO_2$ emission level, and setting of the target level of emission reduction. Moreover, the findings in this study can be utilized widely in fields such as System of integrated Environmental and Economic Accounting(SEEA) and Material Flow Analysis(MFA) as the current topic of research in Korea.

  • PDF

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Low price type inspection and monitoring system of lithium ion batteries for hybrid vessels (하이브리드 선박용 리튬 배터리의 저가형 감시시스템 구현)

  • Kwon, Hyuk-joo;Kim, Min-kwon;Lee, Sung-geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • Batteries are used for main power engine in the fields such as mobiles, electric vehicles and unmanned submarines, for starter and lamp driver in general automotive, for emergency electric source in ship. These days, lead-acid and the lithium ion batteries are increasingly used in the fields of the secondary battery, and the lead-acid battery has a low price and safety comparatively, The lithium ion battery has a high energy density, excellent output characteristics and long life, whereas it has the risk of explosion by reacting with moisture in the air. But Recently, due to the development of waterproof, fireproof, dustproof technology, lithium batteries are widely used, particularly, because their usages are getting wider enough to be used as a power source for hybrid ship and electric propulsion ship, it is necessary to manage more strictly. Hybrid ship has power supply units connected to the packets to produce more than 500kWh large power source, and therefore, A number of the communication modules and wires need to implement the wire inspection and monitor system(WIIMS) that allows monitoring server to transmit detecting voltage, current and temperature data, which is required for the management of the batteries. This paper implements a low price type wireless inspection and monitoring system(WILIMS) of the lithium ion battery for hybrid vessels using BLE wireless communication modules and power line modem( PLM), which have the advantages of low price, no electric lines compared to serial communication inspection systems(SCIS). There are state of charge(SOC), state of health(SOH) in inspection parts of batteries, and proposed system will be able to prevent safety accidents because it allows us to predict life time and make a preventive maintenance by checking them at regular intervals.

The Evaluation of Usefulness of 99Mo-99mTc Generator Using(n,γ)99Mo Developed by Korea Atomic Energy Research ((n,γ)99Mo를 이용한 99Mo-99mTc발생기의 유용성 평가)

  • Seo, Han Kyung;Kim, Jeong Ho;Shim, Cheol Min;Kim, Byung Cheol;Choi, Do Cheol;Gwon, Yong Ju;Park, Yung Sun;Kim, Dong Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.48-52
    • /
    • 2013
  • Purpose: The Molybdenum which is the raw material of $^{99}Mo-^{99m}Tc$ generator is produced from the nuclear reactor. However, output has dwindled as the two nuclear reactors supplying the bulk of radioactive material-one in Chalk River, Ontario and the other in Petten, the Netherlands-have been closed for repairs or maintenance. This resulted in the enhancement of its price. So $^{99}Mo-^{99m}Tc$ generator using$(n,{\gamma})^{99}Mo$ is developed by Korea Atomic Energy Research Institute (KAERI). Medicinal availability of this generator is evaluated in this study. Materials and Methods: The radioactivity of $^{99m}Tc$ eluted in generator 1, 2 and 3 unit developed by KAERI was measured. The quality control test of generator such as appearance test, pH test, LAL test, sterility test, chemical impurity (Al) test and radiochemical purity test were performed. Planar and SPECT/CT image sof SD rat (6 weeks, Female) at 2 hr after injection of $^{99m}Tc-HDP$ (hydroxymethylenediphosphonate) (TechneScan HDP, Malinckrodt Medical, Dutch) and $^{99m}Tc-DPD$ (diphosphono-1, 2-propanedicarboxylicacid) (TECEOS, CIS bio international, France) which were labeled with $^{99m}Tc$ eluted in KAERI and commercial generator (40.5 GBq, Malinckrodt Medical, Dutch) using SPECT/CT camera (Symbia, Siemense, Germany) were obtained respectively. Results: The mean radioactivity of $^{99m}Tc$ elution generator 1unit was 4.18 GBq (113 mCi), generator 2 unit was 4.73 GBq (128 mCi) and generator 3 unit was 3.33 GBq (90 mCi). All quality control tests were within normal limit except pyrogentest. Pyrogen test was positive. Planar and SPECT/CT images of rat injected $^{99m}Tc-HDP$ which was labeled with $^{99m}Tc$ eluted in commercial generator show increased uptake in bone, stomach and bowl. Planar images show increased uptake in liver and bone in case of $^{99m}Tc-DPD$. However, images of rat injected $^{99m}Tc-HDP$ and $^{99m}Tc-DPD$ which were labelled $^{99m}Tc$ eluted in KAERI generator show increased uptake in bone, liver and spleen. Conclusion: If shortcoming is removed such as pyrogen and liver appearance, domestic role as an alternative generator is thought to be able to fill and to secure the national medical service by supplying $^{99m}Tc$ when the supply of $^{99m}Tc$ be comes short.

  • PDF