Observational methods such as the Asaoka's method and the hyperbolic method are widely applied on the settlement analysis using observed settlement. The most unreliable aspects in those methods is arose from the subjective discretion of initial non-linearity on linear regression. The initial non-linearity is inevitable due to the settlement behaviour itself. Therefore an objective method is essential to achieve more reliable results on settlement analysis. It was found that the initial non-linear data are statistical outliers. New automation algorithms of the hyperbolic and the Asaoka's method were developed based on outlier detection method. The methods are a successive detection of outliers and a searching method of suitable hyperbolic range for the Asaoka's and the hyperbolic method respectively. Applicability of the algorithms was verified through case studies.
This research deals with a problem of reconstructing 3D surface structures from their 2D projections, which is an important research topic in computer vision. In order to provide robust reconstruction algorithm, that is reliable even in the presence of uncertainty in the range images, we first present a detailed model and analysis of several error sources and their effects on measuring three-dimensional surface properties using the space encoded range imaging technique. Our approach has two key elements. The first is the error modeling for the space encoding range sensor and its propagation to the 3D surface reconstruction problem. The second key element in our approach is the algorithm for removing outliers in the range image. Such analyses, to our knowledge, have never attempted before. Experimental results show that our approach is significantly reliable.
시간에 따라 얻어진 공간 자료를 공간시계열 자료라 하며 이러한 자료를 분석하기 위해 사용되는 모형이 공간시계열 모형이다. 최근 곤충학과 생태학에서 공간시계열 모형을 이용한 연구가 활발히 진행되고 있다. 본 논문에서는 온실에 있는 곤충의 마리수를 ARMA 모형과 자기회귀 오차모형을 이용한 공간시계열 모형으로 분석하였다. 자료에 포함된 이상점은 분산도(Variogram) 추정에 많은 영향을 주기 때문에 Mugglestone (2000)의 이상점 수정법을 이용하여 수정하였다. 공간시계열 모형들과 시계열 요인을 배제한 공간모형을 MSE와 MAPE를 이용하여 비교하였다.
MT 전달함수의 추정과정에서 로버스트 방법의 적용은 현재 전자탐사 분야에서 일반적이다. 적절하게 고안되고 적용된 로버스트 방법은 출력 채널인 전기장에 포함되어 있는 외치의 영향을 감소시킬 수 있으나, HLP(High leverage point)라 불리 우는 자기장(입력 채널)의 외치에 종종 민감하지 못하다. 이 문제를 해결하기 위해 HLP의 영향을 최소화할 수 있는 BI(Bounded Influence) 추정이 제안되었고, 전통적인 로버스트 방법보다 신뢰성 있는 전달함수를 제공하는 것으로 보고되었다. 이는 BI 추정이 M-추정을 적용함과 동시에 자기장 성분만으로 결정되는 모자행렬의 통계적인 특성을 고려하여 가중치를 부여하는 방법이기 때문이다. 본 연구에서는 전달함수 추정과정에 BI 추정을 적용하고, 이와 더불어 전처리 단계로서 전자기장의 통계적 분포를 이용해 주파수 영역에서 극단적인 전기장과 자기장 자료의 영향을 감소시키는 기법을 개발하였다. 개발된 전처리 기법은 BI 추정으로 제거될 수 없는 자료를 주파수 영역에서 효과적으로 제거하는 것으로 생각된다. 본 연구에서 개발된 기법의 효율성과 장점은 합성 자료와 현장 자료를 이용하여 도시될 것이다.
Concerns about growing health insurance expenditures became a national Issue in 2001 when the National Health Insurance went into a deficit. Increases in spending for ambulatory care shared the largest portion of the problem. Methods and systems to control the spending should be developed and a system to measure case mix of providers is one of core components of the control system. The objectives of this article is to examine the feasibility of applying Korean Diagnosis Related Groups (KDRGs) to classify health insurance claims for ambulatory care and to identify problem areas of the classification. A database of 11,586,270 claims for ambulatory care delivered during January 2002 was obtained for the study, and the final number of claims analyzed was 8,319,494 after KDRG numbers were assigned to the data and records with an error KDRG were excluded from the study. The unit of analysis was a claim and resource use was measured by the sum of charges incurred during a month at a department of a hospital of at a clinic. Within group variance was assessed by th coefficient of variation (CV), and the classification accuracy was evaluated by the variance reduction achieved by the KDRG classification. The analyses were performed on both all and non-outlier data, and on a subset of the database to examine the validity of study results. Data were assigned to 787 KDRGs among 1,244 KDRGs defined in the classification system. For non-outlier data, 77.4% of KDRGs had a CV of charges from tertiary care hospitals less than 100% and 95.43% of KDRGs for data from clinics. The variance reduction achieved by the KDRG classification was 40.80% for non-outlier claims from tertiary care hospitals, 51.98% for general hospitals, 40.89% for hospitals, and 54.99% for clinics. Similar results were obtained from the analyses performed on a subset of the study database. The study results indicated that KDRGs developed for a classification of inpatient care could be used for ambulatory care, although there were areas where the classification should be refined. Its power to predict tile resource utilization showed a potential for its application to measure case mix of providers for monitoring and managing delivery of ambulatory care. The issue concerning the quality of diagnostic information contained in insurance claims remains to be improved, and significance of future studies for other classification systems based on visits or episodes is guaranteed.
고해상도의 정량적 실황강우장을 산정하기 위해서는 양질의 고밀도 강우관측망 정보가 필요하다. 이를 위해 본 연구에서 정량적 실황강우장 산정을 위한 입력자료로 SK 플래닛의 고밀도 복합기상센서 관측망과 기존 기상청 관측망을 이용하고자 하였다. 이를 위해 서울지역에 위치한 SK 플래닛의 복합기상센서 관측망을 소개하고, 2013년 7~9월 3개월 동안의 관측자료의 품질을 분석하였다. 품질분석 결과, SK 플래닛 관측소가 일부 관측소를 제외하고 대부분 기존 관측망과 유사하게 강우를 관측하는 것을 확인할 수 있었다. 다만, 일시적인 기계 및 자료 전송 오류로 인해 발생할 수 있는 결측치 및 이상치가 미치는 영향을 최대한 저감하기 위해서 오자료를 실시간으로 보정할 수 있는 품질보정 기법을 개발하였으며, 개발된 기법이 적절히 강우를 보정하는 것을 확인하였다. 이를 통해 결측률이 20% 미만이면서 오자료의 영향이 최소가 되는 190개소(기상청 34개소, SK 플래닛 156 개소)를 정량적 실황강우장 산정에 활용하였다. 또한, 약 $3km^2$의 밀도를 갖는 고해상도 관측망을 이용하여 산정된 강우분포장의 재현성을 기존 기상청 관측망의 결과비교를 통해 평가한 결과, 고밀도 관측망을 통해 산정된 강우분포장의 빈도곡선이 레이더 공간분포장과 유사하며, 기존 기상청 관측망의 공백을 보완할 수 있음을 확인하였다. 특히, 이 결과를 통해 고밀도의 강우관측 결과를 활용한다면 레이더 참강우장에 근사한 공간분포된 강우를 산정할 수 있다는 것을 확인할 수 있었다.
피어리뷰(peer review)를 통한 학습은 학습자간 피드백을 주고받으며 다양한 정보를 관찰, 분석하는 과정을 통해 학습성과를 향상시키는 방법이다. 피어리뷰 시스템의 중요한 문제 중 하나는, 학습자의 여러 특징을 고려하여 학습자의 학습성과를 향상시키는데 적합한 평가자를 찾는 것이다. 그러나 기존 피어리뷰 시스템에서는 학습자들이 가지는 다양한 특징을 고려하지 않고 단순히 피어리뷰 평가자를 임의로 할당하거나 제한적인 학습 전략에 따라 피어리뷰 평가자를 편성하였다. 본 논문에서는 학습자와 평가자의 다양한 특징을 고려하여, 특정 학습자와 평가자의 조합으로 피어리뷰 학습이 이루어졌을 때 학습자에게 어느 정도의 학습성과 향상이 있을지 예측하는 방법을 제안한다. 제안하는 방법은 학습자와 평가자의 프로파일 정보로부터 대표 속성을 추출하고 다양한 회귀 모델을 적용하였다. 또한 학습자들의 다양한 특징으로 인하여 나타날 수 있는 이상치(outlier)가 학습성과 예측에 미치는 영향을 알아보기 위해, 회귀 모델에 다양한 이상치 제거 방법을 적용하여 학습성과 예측성능을 비교하였다. 실험 결과 이상치를 제거 하지 않은 SVR 모델이 평균 0.47%의 에러율을 보이며 가장 우수한 학습성과 예측결과를 보였다.
최근 다양한 기능을 가진 센서가 개발됨에 따라 여러 종류의 데이터를 간편하게 측정할 수 있게 되었다. 특히, 센서들이 인터넷에 연결되는 사물인터넷(Internet of Things: IoT)환경과 헬스 케어 서비스가 결합하면서 원격에서 심박수, 혈중 산소 농도, 체온, 혈압 등의 사용자 데이터를 수집하는 어플리케이션이 등장하고 있다. 사용자의 유전 정보를 이용하여 이상형을 찾거나 환자의 질병유무를 알려주는 어플리케이션 등이 대표적이 예이다. 이 때에 수집되는 사용자 데이터는 사용자의 프라이버시와 매우 밀접하기 때문에 이러한 정보는 반드시 보호되어야 한다. 즉, 사용자의 프라이버시를 보장하면서 서비스제공자는 적절한 서비스를 제공하여야 한다. 본 논문에서는 PhysioNet에서 제공하는 생체정보를 활용하여 헬스 케어 서비스를 제공하는 환경에서 프라이버시를 보장하며 서비스 제공자가 서비스를 제공할 수 있는 있는 기법을 제안한다.
로지스틱회귀분석은 고객관계관리를 위한 데이터마이닝 분야에서 많이 사용되는 기법인데, 이 분야의 모형설정 과정에서는 연관성이 매우 높은 설명변수들이 모형에 함께 포함되어 다중공선성의 문제를 유발하며, 더욱이 회귀자료에 이상점들이 포함되면 최우추정량은 심각한 결함을 갖게 된다. 두 가지 문제점을 동시에 해결하기 위하여 로버스트주성분로지스틱회귀를 적용할 수 있는데, 본 논문에서는 주성분의 선정기준을 결정하는 모형을 개발하고, 주성분모형에서의 추정치에 미치는 이상점의 영향을 축소하기 위한 로버스트추정법을 제안하였다. 제안된 추정법은 다중공선성과 이상점이 유발하는 문제들을 적절히 해결해 준다는 사실이 모의실험을 통하여 확인되었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권7호
/
pp.3093-3115
/
2020
Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.