• Title/Summary/Keyword: Outlier Detections

Search Result 4, Processing Time 0.02 seconds

TIME-VARIANT OUTLIER DETECTION METHOD ON GEOSENSOR NETWORKS

  • Kim, Dong-Phil;I, Gyeong-Min;Lee, Dong-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.410-413
    • /
    • 2008
  • Existing Outlier detections have been widely studied in geosensor networks. Recently, machine learning and data mining have been applied the outlier detection method to build a model that distinguishes outliers based on anchored criterion. However, it is difficult for the existing methods to detect outliers against incoming time-variant data, because outlier detection needs to monitor incoming data and classify irregular attacks. Therefore, in order to solve the problem, we propose a time-variant outlier detection using 2-dimensional grid method based on unanchored criterion. In the paper, outliers using geosensor data was performed to classify efficiently. The proposed method can be utilized applications such as network intrusion detection, stock market analysis, and error data detection in bank account.

  • PDF

Outlier Detection in Time Series Monitoring Datasets using Rule Based and Correlation Analysis Method (규칙기반 및 상관분석 방법을 이용한 시계열 계측 데이터의 이상치 판정)

  • Jeon, Jesung;Koo, Jakap;Park, Changmok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.43-53
    • /
    • 2015
  • In this study, detection methods of outlier in various monitoring data that fit into big data category were developed and outlier detections were conducted for both artificial data and real field monitoring data. Rule-based methods applied rate of change and probability of error for monitoring data are effective to detect a large-scale short faults and constant faults having no change within a certain period. There are however, problems with misjudgement that consider the normal data with a large scale variation as outlier caused by using independent single dataset. Rule-based methods for noise faults detection have a limit to application of real monitoring data due to the problem with a choice of proper window size of data and finding of threshold for outlier judgment. A correlation analysis among different two datasets were very effective to detect localized outlier and abnormal variation for short and long-term monitoring dataset if reasonable range of training data could be selected.

Outlier Detection Based on Discrete Wavelet Transform with Application to Saudi Stock Market Closed Price Series

  • RASHEDI, Khudhayr A.;ISMAIL, Mohd T.;WADI, S. Al;SERROUKH, Abdeslam
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.1-10
    • /
    • 2020
  • This study investigates the problem of outlier detection based on discrete wavelet transform in the context of time series data where the identification and treatment of outliers constitute an important component. An outlier is defined as a data point that deviates so much from the rest of observations within a data sample. In this work we focus on the application of the traditional method suggested by Tukey (1977) for detecting outliers in the closed price series of the Saudi Arabia stock market (Tadawul) between Oct. 2011 and Dec. 2019. The method is applied to the details obtained from the MODWT (Maximal-Overlap Discrete Wavelet Transform) of the original series. The result show that the suggested methodology was successful in detecting all of the outliers in the series. The findings of this study suggest that we can model and forecast the volatility of returns from the reconstructed series without outliers using GARCH models. The estimated GARCH volatility model was compared to other asymmetric GARCH models using standard forecast error metrics. It is found that the performance of the standard GARCH model were as good as that of the gjrGARCH model over the out-of-sample forecasts for returns among other GARCH specifications.

Outliers and Level Shift Detection of the Mean-sea Level, Extreme Highest and Lowest Tide Level Data (평균 해수면 및 최극조위 자료의 이상자료 및 기준고도 변화(Level Shift) 진단)

  • Lee, Gi-Seop;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.322-330
    • /
    • 2020
  • Modeling for outliers in time series was carried out using the MSL and extreme high, low tide levels (EHL, HLL) data set in the Busan and Mokpo stations. The time-series model is seasonal ARIMA model including the components of the AO (additive outliers) and LS (level shift). The optimal model was selected based on the AIC value and the model parameters were estimated using the 'tso' function (in 'tsoutliers' package of R). The main results by the model application, i.e.. outliers and level shift detections, are as follows. (1) The two AO are detected in the Busan monthly EHL data and the AO magnitudes were estimated to 65.5 cm (by typhoon MAEMI) and 29.5 cm (by typhoon SANBA), respectively. (2) The one level shift in 1983 is detected in Mokpo monthly MSL data, and the LS magnitude was estimated to 21.2 cm by the Youngsan River tidal estuary barrier construction. On the other hand, the RMS errors are computed about 1.95 cm (MSL), 5.11 cm (EHL), and 6.50 cm (ELL) in Busan station, and about 2.10 cm (MSL), 11.80 cm (EHL), and 9.14 cm (ELL) in Mokpo station, respectively.