• Title/Summary/Keyword: Outlet height

Search Result 99, Processing Time 0.026 seconds

Numerical Analysis for the Effect of Spacer in Reverse Electrodialysis (역전기투석 장치 내 스페이서의 영향에 관한 수치해석적 연구)

  • Shin, Dong-Woo;Kim, Hong-Keun;Kim, Tae-Hwan;Park, Jong-Soo;Jeon, Dong Hyup
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, the effects of spacer and variation of spacer height in reverse electrodialysis (RED) on the seawater and ion transport were investigated. A three-dimensional computational fluid dynamics (CFD) simulation for a hexagonal spacer was constructed. The results showed that the swirl in the channel and ion transport rate to the membrane were enhanced at higher Reynolds number, on the other hand, pressure difference between the inlet and outlet was increased. Moreover thicker spacer increased Power number and Sherwood number.

The Performance Characteristics of Anti-Surge Devices for High Head Cooling Water Systems in 1,000 MW Thermal Power plants (고수두 1,000 MW 석탄화력발전소 냉각수계통 수격방지장치의 성능특성)

  • Kim, Keun-Pil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.36-42
    • /
    • 2019
  • In recent, according to the tightening of environment regulation policy, the height of the site of the power plant is increased and the length of the cooling water pipe is increased. This has a serious impact on the stability of the plant. This study analyzes the transient phenomenon using LIQT 7.2, an unsteady state one-dimensional analysis software, to secure the stability of 1,000 MW high-capacity coal-fired power plant cooling water system with high head. To prevent water hammer, The effects on performance characteristics were predicted by individual and combination application. The surge pressure of the cooling water which occurs when the pump was stopped without installing the anti-surge devices was the largest at the pump outlet side. The most effective and simple way to reduce surge pressure in these cooling water systems is to combine a vacuum breaker with a hydraulic non-return valve, which is an essential device for pump protection.

Production of Ultra-fine Metal Powder with Gas Atomization Processes

  • Wang, M. R.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.59-68
    • /
    • 2006
  • Experimental results of the metal powder production with internal mixing, internal impinging and the atomizer coupled with substrate design are presented in this paper. In a test with internal mixing atomizer, mean powder size was decreased from $37{\mu}m\;to\;23{\mu}m$ for Pb65Sn35 alloy as the gas-to-melt mass ratio was increased from 0.04 to 0.17. The particle size further reduces to $16.01{\mu}m$ as the orifice area is increased to $24mm^2$. The micrograph of the metal powder indicates that very fine and spherical metal powder has been produced by this process. In a test program using the internal impinging atomizers, the mean particle size of the metal powder was decreased from $22{\mu}m\;to\;12{\mu}m$ as the gas-to-melt-mass ratio increased from 0.05 to 0.22. The test results of an atomizer coupled with a substrate indicates that the deposition rate of the molten spray on the substrate is controlled by the diameter of the substrate, the height of the substrate ring and the distance of the substrate from the outlet of the atomizer. This in rum determines the powder production rate of the spraying processes. Experimental results indicate that the deposition rate of the spray forming material decreases as the distance between the substrate and the atomizer increases. For example, the deposition rate decreases from 48% to 19% as the substrate is placed at a distance from 20cm to 40cm. On the other hand, the metal powder production rate and its particle size increases as the subsrate is placed far away from the atomizer. The production of metal powder with mean particle size as low as $3.13{\mu}m$ has been achieved, a level which is not achievable by the conventional gas atomization processes.

  • PDF

Analysis of Operation Parameters of Pilot-Scale Packed-Absorption System for Airborne Methyl Ethyl Ketone Control (공기 중 메틸에틸케톤 제어를 위한 Pilot-Scale 흡수 시스템의 운영인자 분석)

  • Jo, Wan-Kuen;Kim, Wang-Tae
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.501-509
    • /
    • 2011
  • Unlike many laboratory-scale studies on absorption of organic compounds (VOCs), limited pilot-scale studies have been reported. Accordingly, the present study was carried out to examine operation parameters for the effective control of a hydrophilic VOC (methyl ethyl ketone, MEK) by applying a circular pilot-scale packed-absorption system (inside diameter 37 cm ${\times}$ height 167 cm). The absorption efficiencies of MEK were investigated for three major operation parameters: input concentration, water flow rate, and ratio of gas flow-rate to washing water amount (water-to-gas ratio). The experimental set-up comprised of the flow control system, generation system, recirculation system, packed-absorption system, and outlet system. For three MEK input concentrations (300, 350, and 750 ppm), absorption efficiencies approached near 95% and then, decreased gradually as the operation time increased, thereby suggesting a non-steady state condition. Under these conditions, higher absorption efficiencies were shown for lower input concentration conditions, which were consistent with those of laboratory-scale studies. However, a steady state condition occurred for two input concentration conditions (100 and 200 ppm), and the difference in absorption efficiencies between these two conditions were insignificant. As supported by an established gas-liquid absorption theory, a higher water flow rate exhibited a greater absorption efficiency. Moreover, as same with the laboratory-scale studies, the absorption efficiencies increased as water-to-gas ratios increased. Meanwhile, regardless of water flow rates or water-to-gas ratios, as the operation time of the absorption became longer, the pH of water increased, but the elevation extent was not substantial (maximum pH difference, 1.1).

Large Eddy Simulation of Flow around a Bluff Body of Vehicle Shape

  • Jang, Dong-Sik;Lee, Yeon-Won;Doh, Deug-Hee;Toshio Kobayashi;Kang, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1835-1844
    • /
    • 2001
  • The turbulent flow with wake, reattachment and recirculation is a very important problem that is related to vehicle dynamics and aerodynamics. The Smagorinsky Model (SM), the Dynamics Subgrid Scale Model (DSM), and the Lagrangian Dynamic Subgrid Scale Model (LDSM) are used to predict the three-dimensional flow field around a bluff body model. The Reynolds number used is 45,000 based on the bulk velocity and the height of the bluff body. The fully developed turbulent flow, which is generated by the driver part, is used for the inlet boundary condition. The Convective boundary condition is imposed on the outlet boundary condition, and the Spalding wall function is used for the wall boundary condition. We compare the results of each model with the results of the PIV measurement. First of all, the LES predicts flow behavior better than the k-$\xi$ turbulence model. When ew compare various LES models, the DSM and the LDSM agree with the PIV experimental data better than the SM in the complex flow, with the separation and the reattachment at the upper front part of th bluff body. But in the rear part of the bluff body, the SM agrees with the PIV experimental results better than them. In this case, the SM predicts overall flow behavior better than the DSM nd the LDSM.

  • PDF

A Study on Selection Method of Management Watershed for Total Pollution Load Control at Tributary (지류총량관리를 위한 관리유역 선정 방법에 관한 연구)

  • Hwang, Ha Sun;Lee, Sung Jun;Ryu, Jichul;Park, Ji Hyung;Kim, Yong Seok;Ahn, Ki Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.528-536
    • /
    • 2016
  • The purpose of Total Pollution Load Control at Tributary is to obtain maximum improvement effect of water quality through finding the most impaired section of water-body and establishing the proper control measure of pollutant load. This study was implemented to determine the optimal management of reach, period, condition, watershed, and pollution source and propose appropriate reduction practices using the Load duration curve (LDC) and field monitoring data. With the data of measurement, LDC analysis shows that the most impaired condition is reach V (G4~G5), E group (flow exceedance percentile 90~100%) and winter season. For this reason, winter season and low flow condition should be preferentially considered to restore water quality. The result of pollution analysis for the priority reach and period shows that agricultural nonpoint source loads from onion and garlic culture are most polluting. Therefore, it is concluded that agricultural reuse of surface effluent (storm-water runoff with non-point sources) and low impact farming that includes reducing fertilization and controlling the height of drainage outlet are efficient water quality management for this study watershed.

Slope stability method establish and carry out in vertical slope for tunnel excavation (터널의 굴착을 위한 수직사면의 안정대책 방안 수립 및 시행)

  • Park, Chal-Sook;Kim, Jun-Yong;Kwan, Han;Kim, Min-Jo;Choi, Yu-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.992-1006
    • /
    • 2008
  • The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. Cutting-slope adjacent to outlet of spillways had been originally designed to be 63 degrees and about 65m in height. Examination is carried out in preceding construction that it is caused to some problems possibility which of machine for slope cutting couldn't approach to the site, blasting for cutting slope might have negative influence on highway and roads nearby, and fine view along the Tae-hwa river would be eliminated. In order to establish stability of tunnel and more friendly natural environment that we are carry out detailed geological surface survey and analysis of slope stability. So, we are design and construct for tunnel excavation with possible method that it is keep up natural slope. The result of survey and analysis that natural slope was divided 3 zone(A, B, C zone). In A and B zone, in first removed floating rock, high tensile tension net is install that it prevent of release and falling of rock, in order to security during under working. In addition to, pre-stressed rock anchor is install purpose of security during tunnel excavation because of fault zone near vertical developed above excavation level. Zone C is relatively good condition of ground, design is only carry out random rock bolt. All zone are designed and constructed drainage hole for groundwater and surface water is easily drain. Desinged slpoe is harmony with near natural environment. Successfully, construction is completed.

  • PDF

A Study on the Effect of Open and Closed Room Doors on Apartment Ventilation Characteristics (공동주택에서 각 실 문의 개폐에 따른 환기 특성 연구)

  • Choi, Im-Kyoo;Kim, Young-Il;Chung, Kwang-Seop
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.469-474
    • /
    • 2008
  • The objective of this study is to propose basic design guidelines for more effective air ventilation system in apartments. It is well known that ventilation depends on whether the room doors are open or closed as well as people's living patterns. This study considers 84 ㎡-sized apartment which has extended living room without balcony. Ventilation of bathroom and kitchen is not considered. The height of the building, external air pressure and air infiltration through the windows are also neglected. The regulation on indoor air quality made it mandatory that the air change per hour be more than 0.7. Four models are suggested to study the effect of open and closed doors. Models 1 and 3 are open door types and models 2 and 4 are closed door types. The open types have 50 mm hole near the top of the door to substitute exhaust outlet. The ventilation effectiveness was evaluated by 3-dimensional numerical simulation using finite volume method by a commercial software. This work compares air flow, temperature of air, age of air and the efficiency of ventilation of apartments with wooden doors of bedroom 1 and 2, which are open or closed.

  • PDF

A Simulation for the Stratified Thermal Storage System in Residential Solar Energy Application (주거용 태양열 성층축열시스템의 시뮬레이션)

  • Pak, Ee-Tong;Yoo, Ho-Seon
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.44-52
    • /
    • 1991
  • The benefits of thermal stratification in sensible heat storage systems has been considered and studying by several investigators. In this paper, the basic data which is hard to obtain normally through the experiment were obtainable through the computer simulation. The major objectives of the study were to assess the benefits of stratified storage in residential solar water heating application and to suggest the optimum design parameters. From the computer simulation, following results were obtained. 1. The solar load fraction increases with increasing the number of tank segments. In these simulation, the magnitude of the improvement was about 10%. 2. The solar load fraction increases when the ratio of diameter to height of the tank(H/D) increases to 3, but H/D exceed 3 then, the solar load fraction decreases. In these simulation, the magnitude of the improvement was about 3%. 3. Increasing the collector flow rate slightly improved the performance of the mixed storage system(Node=1). But, for the stratified storage system(Node=N), the solar load fraction increases with decreasing flow rate until the point is reached at which the collector outlet temperature reaches the boiloff limit of $100^{\circ}C$ over some portion of the simulation period.

  • PDF

A Numerical Study on a Supersonic Turbine Performance Characteristics with Different Nozzle-Rotor Axial Gap Spacings (노즐-로터 축간극 거리에 따른 초음속 터빈 내의 성능특성에 대한 수치적 연구)

  • Jeong, Sooin;Choi, Byoung-ik;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, 3-dimensional URANS simulation was performed to analyze the effect of the nozzle-rotor axial gap spacing of a supersonic impulse turbine on turbine performance. The computations were conducted for four different axial gap cases corresponding to about 6%, 10%, 20% and 30% of the blade height, respectively. The results show a good agreement with previous studies and the turbine efficiency decreases drastically in certain range. It is examined that the turbine performance characteristics could change depending on the influence of leading edge shock to the nozzle outlet. It is also found that the entropy rise distributions along the span differ from each other.