• Title/Summary/Keyword: Outer-rotor

Search Result 176, Processing Time 0.031 seconds

The Stability of the Flexible Rotor Mounted on Circumferentially Grooved Floating Ring Journal Bearings (원주방향 급유홈 프로팅링 저널베어링으로 지지된 탄성 회전체의 안정성)

  • 정연민;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2205-2215
    • /
    • 1992
  • The stability of the flexible rotor mounted on circumferentially grooved floating ring journal bearings was investigated theoretically and experimentally. The floating ring journal bearing was analyzed by using JFO reformation boundary condition. The flexible shaft was analyzed by the finite element method based on Rayleigh beam theory. It was found that the measured ring speed agrees well with the theoretical results. The instability of the system due to not only the outer film but also the inner film of the bearing could be predicted by the theory which allows negative vapor pressure. The tendency that reducing the supply pressure of lubricant stabilizes the system was observed both experimentally and theoretically.

Lubrication Performance Analysis of A Low-Speed Dry Gas Seal having An Inner Circular Groove (내부 원형 그루브를 갖는 저속 드라이 가스 시일의 윤활 성능해석)

  • Lee An Sung;Kim Jun Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.201-208
    • /
    • 2004
  • In this study a general Galerkin FE lubrication analysis method was utilized to analyze the complex lubrication performance of a spiral groove seal having an additional inner circular groove, which was designed for a chemical process mixer operating at a low speed of the maximum 500 rpm. Equilibrium seal clearance analyses under varying outer pressure revealed that the seal maintains a certain levitation seal clearance under the outer pressure of more than about 1.5 bar, regardless of a rotating speed. Also, under the normal outer pressure of 11 bar, the axial stiffness of the seal was predicted to have a high value of more than 7.0e+07 N/m, regardless of a rotating speed and thereby, the seal is expected to maintain a stable thickness of lubrication film under a certain external excitation acting.

  • PDF

Development of Single-phase Brushless DC Motor with Outer Rotor for Ventilation Fan (환풍기용 외전형 단상 브러시리스 직류전동기 개발)

  • Park, Yong-Un;Jeong, Hak-Gyun;Cho, Ju-Hee;So, Ji-Yong;Jung, Dong-Hwa;Kim, Dae-Kyong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.36-41
    • /
    • 2013
  • This paper is development of single-phase brushless DC motor with outer rotor for ventilation fan. Cogging torque causes the noise vibration to greatest impact on ventilation fan. Asymmetric notches are applied to tapered-teeth for cogging torque reduction of single-phase brushless DC motor. Initial model is notchless and proposed model is applied 2 asymmetric notches. The proposed method is proved motor characteristic through finite element analysis(FEA). Also, experimental results verify that the proposed model considerably reduces cogging torque and have the good sound quality in ventilation system.

Integrated Model of Power Electronics, Electric Motor, and Gearbox for a Light EV

  • Hofman, Isabelle;Sergeant, Peter;Van den Bossche, Alex;Koroglu, Selim;Kesler, Selami
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1640-1653
    • /
    • 2015
  • This study presents a model of a drivetrain for an integrated design of a light electric vehicle (EV). For the drivetrain of each front wheel of the single-person, battery-powered EV tricycle consists of a battery, an inverter, and an outer rotor permanent magnet synchronous motor (PMSM), which is connected to an in-wheel gearbox. The efficiency of the inverter, motor, and gearbox is analyzed over the New European Driving Cycle. To calculate the losses and efficiency of the PMSM, the power electronics in the inverter and gearbox are used. The analytical models provide a fast, but less accurate result, useful for optimization purposes. To accurately predict the efficiency of the PMSM, a finite element model is used. The models are validated by test setups. Correspondingly, a good agreement between the measurements and the calculated results is achieved. A parameter study is performed to investigate the influence of the detailed component parameters (i.e., outer rotor radius, gear ratio, and number of pole pairs and stator slots) on the average efficiency of the drivetrain.

Rotordynamic Analysis and Experimental Investigation of the Turbine-Generator System Connected with Magnetic Coupling (마그네틱 커플링으로 연결된 터빈-발전기 시스템의 로터다이나믹 해석 및 실험적 고찰)

  • Kim, Byung Ok;Park, Moo Ryong;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.32-38
    • /
    • 2013
  • This paper deals with the study on the rotordynamic and experimental analysis of turbine-generator system connected with a magnetic coupling. Although magnetic coupling has been used to torque transmission of chemical processing pump rotating at under 3,600rpm, magnetic coupling in this study is applied to high-speed turbine-generator system using a working fluid that is refrigerant such as ammonia or R-124a. Results of rotordynamic design analysis are as follows. The first, shaft diameter nearest to outer hub of magnetic coupling has a big effect on the $1^{st}$ critical speed of generator rotor. The second, if the $1^{st}$ critical speeds of turbine rotor and generator rotor have enough to separation margin in comparison to rated speed, the $1^{st}$ critical speed of turbine-magnetic coupling-generator rotor train has enough to separation margin regardless of connection stiffness of magnetic coupling. The analytical FE model is guaranteed by impact test on the prototype and condition monitoring such as measurements of vibration and bearing temperature is also performed.

Predicting Double-Blade Vertical Axis Wind Turbine Performance by a Quadruple-Multiple Streamtube Model

  • Hara, Yutaka;Kawamura, Takafumi;Akimoto, Hiromichi;Tanaka, Kenji;Nakamura, Takuju;Mizumukai, Kentaro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.16-27
    • /
    • 2014
  • Double-blade vertical axis wind turbines (DB-VAWTs) can improve the self-starting performance of lift-driven VAWTs. We here propose the quadruple-multiple streamtube model (QMS), based on the blade element momentum (BEM) theory, for simulating DB-VAWT performance. Model validity is investigated by comparison to computational fluid dynamics (CFD) prediction for two kinds of two-dimensional DB-VAWT rotors for two rotor scales with three inner-outer radius ratios: 0.25, 0.5, and 0.75. The BEM-QMS model does not consider the effects of an inner rotor on the flow speed in the upwind half of the rotor, so we introduce a correction factor for this flow speed. The maximum power coefficient predicted by the modified BEM-QMS model for a DB-VAWT is thus closer to the CFD prediction.

Flight Control of Tilt-Rotor Airplane In Rotary-Wing Mode Using Adaptive Control Based on Output-Feedback (출력기반 적응제어기법을 이용한 틸트로터 항공기의 회전익 모드 설계연구)

  • Ha, Cheol-Keun;Im, Jae-Hyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 2010
  • This paper deals with an autonomous flight controller design problem for a tilt-rotor aircraft in rotary-wing mode. The inner-loop algorithm is designed using the output-based approximate feedback linearization. The model error originated from the feedback linearization is cancelled within allowable tolerance by using single-hidden-layer neural network. According to Lyapunov direct stability theory, the adaptive update law is derived to run the neural network on-line, which is based on the linear observer dynamics. Moreover, the outer-loop algorithm is designed to track the trajectory generated from way-point guidance. Especially, heading and flight-path angle line-of-sight guidance are applied to the outer-loop to improve accuracy of the landing tracking performance. The 6-DOF nonlinear simulation shows that the overall performance of the flight control algorithm is satisfactory even though the collective input response shows instantaneous actuator saturation for a short time due to the lack of the neural network and the saturation protection logic in that loop.

Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports (볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성)

  • Seo, Jung Hwa;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

An Experimental Study on Identification of Noise Generation Mechanism And Its Improvement in Gerotor Oil Pump (직동식 오일 펌프의 소음 발생 메커니즘 규명과 개선에 관한 실험적 연구)

  • Jung, Byung-Hwan;Jeong, Won-Jo;Shin, Dal-Heun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.121-127
    • /
    • 2012
  • Whine noise in engine oil pump system was issued in developing an engine. Generally, A noise of engine oil pump largely are classified two cases. The first one is a gearing noise caused by relative motion of inner rotor and outer rotor. The other is fluid pulsation noise caused by oil pressure fluctuation. The aim of the paper is to identify a noise mechanism in engine oil pump and improve its Noise. Also, it suggests to the guide line on the design of oil pump.

  • PDF