• Title/Summary/Keyword: Outer boundary

Search Result 359, Processing Time 0.024 seconds

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

Analysis on the Legal Impacts of Sea-Level Rise for the Application of the UN Convention on the Law of the Sea (해수면 상승이 유엔해양법협약 적용에 미치는 영향 분석)

  • Yong Hee Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.147-159
    • /
    • 2023
  • Sea level rise due to climate change is an increasing concern for the international community, and especially for coastal States. In case of regression of the coastal line or inundations of maritime features, including islands, the questions of whether coastal States are under an obligation to redraw their baseline and the outer limits of their maritime jurisdiction and of whether the existing maritime boundary treaties should be terminated are raised. This article reviews the arguments raised by the Small Island Developing States, International Law Association, and International Law Commission and suggests a solution within the current legal framework of the Law of the Sea through an interpretation of the existing provisions of the UNCLOS focusing on the legal issues relating to the Law of the Sea.

The Creation and Transformation Process of Ssangsanjae as a Private Garden in the Late Joseon Dynasty (조선 후기 민가 정원 쌍산재의 조영과 변화 과정)

  • Kim, Seo-Lin;Sung, Jong-Sang;Kim, Hee-Su;Cui, Yu-Na;Jung, Jin-Ah;Cho, Seong-Ah
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Ssangsanjae was created in the mid-1800s, It is located at Jiri Mountain to the north and the Seomjin River to the south. This garden has not changed much even though it has passed through the sixth generation since its creation, so it still retains the features of a private garden in the late Joseon Dynasty. This study focused on the changing landscape of Ssangsanjae as a historical garden; through field surveys, interviews and analysis of builder's collection, boards and couplets. Ssangsanjae is largely classified into inner and outer gardens, and the inner is divided into an entry space, a residential space, and a backyard. The backyard consists of Seodangchae, it's garden, Gyeongamdang, and swimming pool, and is connected to the Sado Reservoir area, which is the outer garden. The distinct vegetation landscape of Ssangsanjae are a 13,000m2 bamboo and green tea field, Peony(Paeonia suffruticosa Andr. and Paeonia lactiflora var. trichocarpa(Bunge) Stern) planted on both sides of the road that crosses the lawn, the view through a frame(額景) shown by the twisted branches of Camellia and Evergreen spindletree, and a fence made of Trifolia Orange(Poncirus trifoliata) and Bamboo. Ssangsanjae stands out for its spatial composition and arrangement in consideration of the topography and native vegetation. The main building was named by the descendants based on the predecessor's Aho(pseudonym), and it is the philosophical view of the predecessors who tried to cultivate the younger students without going up on the road. The standing stone and white boundary stone built by Mr. Oh Ju Seok are Ssangsanjae's unique gardening facilities. The stone chairs, and swimming pool which were created by the current owner for the convenience of families and visitors also make a distinctive landscape. Ssangsanjae, for residents, was a place for living, exchanging friendships, training himself and seculusion, for children was a place for learning, but now is 'the private garden' where many people can heal themselves. Over the 200 years, the landscape of Ssangsanjae's inner and outer gardens experienced large and small changes. As such, it is necessary to recognize the historical gardens with changing properties as a living heritage. This study is significant in that, as the first study to approach Ssangsanjae in the view of landscape research, it provides basic data on Ssangsanjae as a destination of garden tourism.

A Study of the Construction and Change of Chugyeongwon in Donggweol (동궐(東闕) 추경원(秋景苑)의 조영과 변천에 관한 고찰)

  • Oh, Jun-young
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.1
    • /
    • pp.44-63
    • /
    • 2019
  • This study empirically investigated the construction and aspects of change in Chugyeongwon, which is located in Donggweol (東闕). In detail, this study investigated the location of the construction and range of Chugyeongwon, the background and intention of the construction, and the affiliated system and aspects of spatial changes of it. The research results can be summarized as follows: First, Chugyeongwon has been assumed to be the space near Haminjeong (涵仁亭) or between Simindang (時敏堂) and Jinsudang (進修堂) in Changgyeonggung Palace. However, according to related historical materials, it is said that Chugyeongwon was located west of Dochongbu (都摠府) in Hyeopsangmun (協祥門) and near Sungmundang (崇文堂). Through Donggweoldohyeong (東闕圖形), evidence of the construction of Chugyeongwon can be found, which verifies such claims. According to The Plan of Changgyeonggung Palace (昌慶宮配置圖), in the form of modern measured drawing, Chugyeongwon today is the green space created in the south of Munjeongjeon (文政殿) and Sungmundang in Changgyeonggung Palace. Second, According to Donggweoldo (東闕圖), Chugyeongwon was a green space where trees grew on the ground within the walls. No artificial facilities were constructed inside. In addition, Chugyeongwon was located at a site with an altitude higher than the surroundings. Especially, the composition forms and location characteristics of Chugyeongwon are similar to those of the Palace Outer Garden located in Hanyang. Thus, based on this evidence about the form and other aspects of the operation of the Palace Outer Garden, it can be inferred that Chugyeongwon was constructed for the preservation and cultivation of the geographical features inside Donggweol. Third, in the late Joseon period, Chugyeongwon was assigned to Changdeokgung Palace or Changgyeonggung Palace in the same manner as was Donggung (東宮). Thus, it is very likely that Chugyeongwon served as a garden for the Royal Family in the Donggung area. The west boundary of Chugyeongwon, which originally consisted of walls and a side gate, was changed into the form in which the walls and colonnades were combined. Chugyeongwon has been modified due to various acts of development since the Japanese colonial era, and in the end, it has disappeared so that no trace can be found.

(Development of Ring Core Auto-Classifier by Multi-Motor Control) (여러 개의 모터에 의하여 제어되는 링-코어 자동 선별기 개발)

  • Park, In-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.104-115
    • /
    • 2002
  • Core is the main component of inductor. This core should be classified into around 10 classes according to the value of inductance and Q. The coil should be winded with the outer-boundary of this core by different number of turns. Theses kind of precise inductors would be required in the future environment which PCs and communication devices demand more high speed and lower voltage level. It would be quite unefficient that only one core is classified once a time. There, it will be developed so that 10 cores are classified simultaneously. For the operation of classifying 10 cores once in a time, suppose 10 test instruments could be used. In this case, it would take much cost since a test instrument Is expensive. So, by using only one test instrument, it is really more desirable that this system is developed. Each core classified by 10 different classes is to be stored into the corresponding box through the corresponding rubber hose. 10 cores are passed on a serial line and are placed on each testing slot. Here, each core located at each slot is tested, and then the bowl located on the top of a step motor is moved into the corresponding spot by rotating step motor with some angles. Each bowl connected with the corresponding box through rubber hose. Actually 100 hoses are connected, 10 step motors are rotated at 10 different angles, so the size is really so big, the shape of connecting 100 hoses is so complicated. Therefore it is anticipated that the system would be going to be easily out of ordered. In this paper the main purpose is to make several suggestions to be able to work well in these kinds of being affected by the abnormal operation of motors and the flow of cores.

An evaluation of wall functions for RANS computation of turbulent flows (난류 흐름의 RANS 수치모의를 위한 벽함수 성능 평가)

  • Yoo, Donggeun;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • The most common approach for computing engineering flow problems at high Reynolds number is still the Reynolds-averaged Navier-Stokes (RANS) computations based on turbulence models with wall functions. The recently developed generalized wall functions blending between the wall-limiting viscous and the outer logarithmic relations ensure a smooth transition of flow quantities across two regions. The performances and convergence properties of widely used turbulence models with wall functions that are applicable for turbulence kinetic energy (TKE), turbulent and specific dissipation rates, and eddy viscosity are presented through a series of near wall flow simulations. The present results show that RNG k-𝜖 model should be carefully applied with small tolerance to get the stable solution when the first grid lies in the buffer layer. The standard k-𝜖 and RNG k-𝜖 models are not sensitive to the selection of wall functions for both TKE and eddy viscosity, while the k-ω SST model should be applied together with kL-wall function for TKE and nutUB-wall functions for eddy viscosity to ensure accurate and stable boundary conditions. The applications to a backward-facing step flow at Re=155,000 reveal that the reattachment length is reasonably well predicted on appropriately refined mesh by all turbulence models, except the standard k-𝜖 model which about 13% underestimates the reattachment length regardless of the grid refinement.

Fluctuation of Tidal Front and Expansion of Cold Water Region in the Southwestern Sea of Korea (한국 남서해역에서 조석전선의 변동과 저수온역 확장기작)

  • Jeong, Hee-Dong;Kwoun, Chul-Hui;Kim, Sang-Woo;Cho, Kyu-Dae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.289-296
    • /
    • 2009
  • The appearance and variation of cold water area and its expansion mechanism of tidal front in the south western coast of Korea in summer were studied on the basis of oceanographic data(1966-1995), satellite images from NOAA and SeaWiFs and numerical model. Cold water appearance in southwestern field of Jindo was due to the vertical mixing by strong tidal current. Tidal front where horizontal gradient of water temperature was more than $0.3^{\circ}C$/km parallels to contours of H/$U^3$ parameter 2.0~2.5 and the outer boundary of cold water region corresponds with contours of the parameter 2.5~3.0 in the southwestern sea of Korea during the period between neap and spring tides. The position replacement of tidal front formed in the study ares varies in a range of 25~75km and cold water region extends about 90km. These suggest that the magnitude of variation of frontal position and cold water area was proportionate to the tidal current during lunar tidal cycle. Moreover, it was estimated that the southwestward expansion of cold water region was derived from the southwestward tide-induced residual currents with speed more than 10cm/s.

  • PDF

Fatigue Life of the Repair TIG Welded Hastelloy X Superalloy

  • SIHOTANG, Restu;CHOI, Sang-Kyu;PARK, Sung-Sang;BAEK, Eung-Ryul
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.26-30
    • /
    • 2015
  • Hastelloy X in this study was applied in jet engine F-15 air fighter as shroud to isolate the engine from outer skin. After 15 years operation at elevated temperature the mechanical properties decreased gradually due to the precipitation of continues second phases in the grain boundaries and precipitated inside the grain. The crack happened at the edge of the shroud due to the thermal and mechanical stress from jet engine. Selective TEM analysis found that the grain boundaries consist of $M_{23}C_6$ carbide, $M_6$ Ccarbide and small percentage of sigma(${\sigma}$) phase. Furthermore, it was confirmed the nano size of ${\sigma}$ and miu (${\mu}$) phase inside the grain. In this study, it was investigated the microstructure of the degraded shroud component and HAZ of repair welded shroud. In the HAZ, it was observed the dissolution of the $M_{23}C_6$ carbides and smaller precipitates, the migration of the undissolved larger $M_{23}C_6$ carbide and $M_6$ Ccarbide. It is also observed the liquation due to the simply melt of the segregated precipitates in the grain boundaries. Interestingly, the segregated second phases which simply melt in the grain boundaries more easily happened at higher heat input welding condition. High temperature tensile test was done at $300^{\circ}C$, $700^{\circ}C$ and $900^{\circ}C$. It was obtained that the toughness of welded sample is lower compare to the non-welded sample. The solution heat treatment at $1170^{\circ}C$ for 5 minutes was suggested to obtain a better mechanical properties of the shroud. The high cycle fatigue number of the repair welded shroud shows a much lower compare to the shroud. In addition, the high cycle fatigue number at room temperature after solution heat treatment was almost double compare to the before solution heat treatment under 420-500MPa stress amplitude. However, the high cycle fatigue number of repaired welded sample was shown a much lower compare to the non- welded shroud and solution treated shroud. One of the main reasons to decrease the tensile strength and the high cycle fatigue properties of the repair welded shroud is the formation of the liquid phase in HAZ.

A Case Study on Impact Factor of Bridge in Tunnels Subjected to Moving Vehicle Load (터널내 교량의 이동차량하중 작용시 충격계수에 대한 사례연구)

  • 김재민;이중건;이익효;이두화
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.185-193
    • /
    • 1999
  • This paper presents results of dynamic analysis for a bridge in intersection part of two tunnels subjected to moving vehicle load. Since such a bridge system is very unusual due to the fact that it is located in tunnel, the dynamic characteristics of the structure can not be assumed as conventional one. The structure investigated in this study it a reinforced concrete bridge in the intersection part of Namsan Tunnel-1 and Tunnel-2 in Seoul. It is supported by temporary steel structure which shall be constructed during the period of replacing lining in Tunnel-2. Dynamic analysis was carried out for the system using a finite element model constructed by general purpose FE program SAP2000. For this purpose, the structure, lining of tunnels, and surrounding rock were represented by finite elements, while the rock region it truncated and on its outer boundary viscous dampers were placed to simulate radiation of elastic waves generated tunnels. Several types of vehicle with various driving velocities were considered in this analysis. The FE model including vehicle loadings was verified by comparing calculated peak particle velocity with the measured one. From the analysis, the impart factor for the bridge was estimated as 0.21, which indicates that the use of upper bound for the impact factor in design code is reasonable for this kind of bridge system.

  • PDF

Thermo-mechanical Behavior of WB-PBGA Packages with Pb-Sn Solder and Lead-free Solder Using Moire Interferometry (무아레 간섭계를 이용한 유연 솔더와 무연 솔더 실장 WB-PBGA 패키지의 열-기계적 변형 거동)

  • Lee, Bong-Hee;Kim, Man-Ki;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Pb-Sn solder is rapidly being replaced by lead-free solder for board-level interconnection in microelectronic package assemblies due to the environmental protection requirement. There is a general lack of mechanical reliability information available on the lead-free solder. In this study, thermo-mechanical behaviors of wire-bond plastic ball grid array (WB-PBGA) package assemblies are characterized by high-sensitivity moire interferometry. Experiments are conducted for two types of WB-PBGA packages that have Pb-Sn solder and lead-free solder as joint interconnections. Using real-time moire setup, fringe patterns are recorded and analyzed for several temperatures. Bending deformations of the assemblies and average strains of the solder balls are investigated and compared for the two type of WB-PBGA package assemblies. Results show that shear strain in #3 solder ball located near the chip shadow boundary is dominant for the failure of the package with Pb-Sn solder, while normal strain in #7 most outer solder ball is dominant for that with lead-free solder. It is also shown that the package with lead-free solder has much larger bending deformation and 10% larger maximum effective strain than the package with Pb-Sn solder at same temperature level.