• Title/Summary/Keyword: Outer Wing

Search Result 21, Processing Time 0.019 seconds

Experimental Study on Flapping of a Coleoptera (딱정벌레목 곤충의 날갯짓에 대한 실험적 연구)

  • Yoo, Yong-Hoon;Jang, Doo-Hwan;Park, Hoon-Cheol;Byun, Yong-Hwan;Byun, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • A flow visualization is conducted to investigate a flight characteristics of a Coleoptera and an effect of flapping elytra was considered in this study. Also the movements of outer wing(elytra) and inner wing is analyzed using High Speed Camera. As a result of this experiment, in case of flapping insect, three mechanisms to generate lift is confirmed. A small movement of outer wing(elytra) is confirmed and the effect of outer wing(elytra) is estimated.

A study on the Aerodynamic Characteristics of a Flat plat Variable Wing by Combined Swept Back and Forward (평판 가변날개에서 앞-뒤젖힘이 동시에 변할 때의 공력특성에 관한 연구)

  • Lee, B.J.;Oh, S.D.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.5 no.1
    • /
    • pp.31-50
    • /
    • 1997
  • A new variable wing that can be swept back and forward synchronously were developed to enhance the aerodynamic and stability characteristics of a high speed airplane. The configuration of the new variable wing changes in such a way that inner part of the wing sweeps forward and outer part of the wing sweeps backward, the shift of aerodynamic center of the wing is small, therfore the static margin that is required for the stability of a airplane is not affected. In this study, various configurations of wing models by combined swept back and forward were designed and a wind tunnel tests were conducted to investigate the aerodynamic characteristics of these variable wings. The experimental results showed that the variable wing by combined swept back and forward has no effect on the pitching moment coefficient affecting on an aircraft stability margin and enhance the aerodynamic characteristics for a given approach angle of attack.

  • PDF

Reconfigurable Flight Control Design for the Complex Damaged Blended Wing Body Aircraft

  • Ahn, Jongmin;Kim, Kijoon;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.290-299
    • /
    • 2017
  • Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.

A Study on the Damage of Aircraft Wing Attacked by Anti-Aircraft Artillery (대공포 피격에 의한 항공기 날개 손상에 관한 연구)

  • Sim, Sang-Ki;Yoon, Kyong-Sik;Kim, Geun-Won;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.738-745
    • /
    • 2012
  • Aircraft battle damage repair(ABDR) is emergency repair method for the damaged aircraft in battle field. The main purpose of the ABDR is to increase the readiness of fighter aircraft during wartime. While many studies have been conducted to develop ABDR method, few efforts have focused on evaluation of damage and determination of the size of hole caused by enemy's anti-aircraft artillery attack. The aim of this study is essentially to quantify damage of aircraft wing attacked by anti-aircraft artillery. The computer simulations was performed to accomplish this goal. A number of simulations have been carried out to compare size of damages under various attack conditions. In conclusion, it was revealed that the size of damage varied depending on the type and direction of cannonball. Furthermore, in this paper, the proper path sizes are suggested for different damage conditions.

Noise Reduction of Blade Vortex Interaction Using Tip Jet Blowing

  • Yang Choongmo;Baek Jehyun;Saito Shigeru;Aoyama Takashi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.172-174
    • /
    • 2003
  • Nnumerical investigations of the tip vortical characteristics were conducted with lateral tip blowing to reduce Blade-Vortex Interaction (BVI) noise. The predictions of BVI noise were performed using a combined method of an unsteady Euler code with an aeroacoustic code based on Ffowcs- Williams and Hawkings formulation. A moving overlapped grid system with three types of grids (blade grid, inner and outer background grid) was used to simulate BVI of helicopter with two OLS-airfoil blades in forward/ descending flight condition. The calculated waveform of BVI noise, which is characterized by the distinct peaks caused during blade vortex interaction, clearly shows the effect of lateral blowing at tip to reduce BVI noise

  • PDF

Brassiere Pattern Development Based on 3D Measurements of Upper Body Types for Women in Their 40's (3차원 인체 측정을 이용한 40대 여성의 상반신 체형을 고려한 브래지어 패턴 개발)

  • Cho, Shin-Hyun;Kim, Mi-Sook
    • The Research Journal of the Costume Culture
    • /
    • v.16 no.3
    • /
    • pp.502-517
    • /
    • 2008
  • The purpose of the study lies in the measurements of breast shapes and upper body types for the women in their 40's, with the use of 3D measurement system, and in the presentation of brassiere patterns fit for their body types. As for the study method, 3D human body types were analyzed with RapidForm 2006, and the upper-body types and breast shapes were statistically classified through technical statistics analysis, cluster analysis, t-test, variance analysis, and cross analysis. The wearing tests went through the comparison of the brassieres of three makers in the market and the experiment brassieres(first and second) and then the evaluations were made by the subjects, the outer appearance assessment by experts, and 3D measurements. The findings of the study indicated that the evaluation of experiment brassieres was excellent in every item, and he significant difference was found out particularly in the items of pressure, rear center, front center, breast underneath, adequate level by wing, and adequate level by armhole. According to the results of 3D evaluation, experiment brassieres had a highest point in fitness with no physical pressure at the wing part and no overall deviation at the cup art. The pattern comparison showed the differences in the parts of total cup angle, cup circumference length, lower cup height, wing length, and wing angle.

  • PDF

Flight Control of Tilt-Rotor Airplane In Rotary-Wing Mode Using Adaptive Control Based on Output-Feedback (출력기반 적응제어기법을 이용한 틸트로터 항공기의 회전익 모드 설계연구)

  • Ha, Cheol-Keun;Im, Jae-Hyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 2010
  • This paper deals with an autonomous flight controller design problem for a tilt-rotor aircraft in rotary-wing mode. The inner-loop algorithm is designed using the output-based approximate feedback linearization. The model error originated from the feedback linearization is cancelled within allowable tolerance by using single-hidden-layer neural network. According to Lyapunov direct stability theory, the adaptive update law is derived to run the neural network on-line, which is based on the linear observer dynamics. Moreover, the outer-loop algorithm is designed to track the trajectory generated from way-point guidance. Especially, heading and flight-path angle line-of-sight guidance are applied to the outer-loop to improve accuracy of the landing tracking performance. The 6-DOF nonlinear simulation shows that the overall performance of the flight control algorithm is satisfactory even though the collective input response shows instantaneous actuator saturation for a short time due to the lack of the neural network and the saturation protection logic in that loop.

AN OLD SUPERNOVA REMNANT WITHIN AN HII COMPLEX AT $1{\approx}173{\circ}$ : FVW172.8+1.5

  • Gang, Ji-Hyeon;Gu, Bon-Cheol;Salter, Chris
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2012
  • We present the results of HI 21 cm line observations to explore the nature of the high-velocity (HV) HI gas at - 173${\circ}$, which appears as faint, wing-like, Hi emission that extends to velocities beyond those allowed by Galactic rotation in the low-resolution surveys. We designate this feature as Forbidden Velocity Wing (FVW) 172.8+1.5. Our high-resolution Arecibo HI observations show that FVW 172.8+1.5 is composed of knots, filaments, and ring-like structures distributed over an area of a few degrees in extent. These HV HI emission features are well correlated with the HII complex G173+1.5, which is composed of five Sharpless HII regions distributed along a radio continuum loop of size 4.4${\times}$3.4, or -138 pc ${\times}$ 107 pc, at a distance of 1.8 kpc. G173+1.5 is one of the largest star-forming regions in the outer Galaxy. The HV HI gas and the radio continuum loop seem to trace an expanding shell. Its derived HI parameters including large expansion velocity (55 km/s) imply the SNR interpretation. Hot xray emission is detected within the HII complex, which also supports its SNR origin. The FVW172.8+1.5 is most likely the products of a supernova explosion(s) within the HII complex, possibly in a cluster that triggered the formation of these HII regions.

  • PDF

Autonomous Aerobatic Flight for Fixed Wing Aircraft (고정익 항공기의 자율 곡예비행)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1217-1224
    • /
    • 2009
  • A simple and effective guidance and control scheme that enables autonomous three-dimensional path-following for a fixed wing aircraft is presented. The method utilizes the nonlinear path-following guidance law for the outer loop that creates steering acceleration command based on the desired flight path and the current position and velocity of the vehicle. The scheme considers the gravity in the guidance level, where it is subtracted from the acceleration command to form the specific force acceleration command which the aircraft is better suited to follow than the total acceleration command in the inner-loop. A roll attitude control scheme is also presented that enables inverted flight or sideslip maneuvers such as slow roll and knife-edge. A series of aerobatic maneuvers are demonstrated through simulations to show the potential of the proposed scheme.

Control Law Design for a Tilt-rotor Unmanned Aerial Vehicle with a Nacelle Mounted WE (Wing Extension) (체공성능 향상을 위한 확장날개 틸트로터 무인기의 제어법칙설계)

  • Kang, Young-Shin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1103-1111
    • /
    • 2014
  • The results of control law design for a tilt-rotor unmanned aerial vehicle that has a nacelle mounted wing extension (WE) are presented in this paper. It consists of a control surface mixer, stability and control augmentation system (SCAS), hold mode for altitude / speed / heading, and a guidance mode for preprogram and point navigation which includes automatic take-off and landing. The conversion corridor and the control moments derivatives between the original tilt-rotor and its variant of the nacelle mounted WE were compared to show the effectiveness of the WE. The nacelle conversion of the original tilt-rotor starts when the airspeed is greater than 30 km/h but its WE variant starts at 0 km/h in order to reduce the drag caused by the high incidence angle of the WE. The stability margins of the inner loop are presented with the optimization approach. The outer loops for the hold mode are designed with trial and error methods with linear and nonlinear simulation. The main control parameter for altitude control of the helicopter mode is thrust command and it is transferred to the pitch attitude command in airplane mode. Otherwise, the control parameter for the speed of the helicopter mode is the pitch attitude command and it is transferred to the thrust command in airplane mode. Therefore the speed and altitude hold mode are coupled to each other and are engaged at the same time when an internal pilot engages any of the altitude or speed hold modes. The nonlinear simulation results of the guidance control for the preprogrammed mode and point navigation are also presented including automatic take-off and landing in order to prove the full control law.