• Title/Summary/Keyword: Outdoor-Exposure

Search Result 306, Processing Time 0.028 seconds

The effects of aircraft noise on the hearing loss, blood pressure and response to psychological stress (군용 항공기 이륙소음이 청력, 혈압, 스트레스 및 주관적 인지도에 미치는 영향)

  • Han, Sang-Hwan;Cho, Soo-Hun;Koh, Kyung-Shim;Kwon, Ho-Jang;Ha, Mi-Na;Ju, Yeong-Su;Shin, Myung-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.2 s.57
    • /
    • pp.356-368
    • /
    • 1997
  • In effort to determine whether aircraft noise can have health effects such as hearing loss, hypertension and psychological stress, a total of 111 male professors and administrative officers working a college near a military airport in Korea(exposed group) and a total of 168 males and 112 females matched by age groups(control groups) were analyzed. Personal noise exposure and indoor and outdoor sound level of jet aircraft noise were measured at the exposed are3. And pure tone, air conduction test and measurement of blood pressure were given to the exposed(males) and matched control groups (males and females). BEPSI(Brief Encounter Psychological Instrument) and psychological response to aircraft noise were examined for the exposed group. The noise dosimetry results revealed time-weighted averages(TWAs) that ranged from 61 to 68 dBA. However the levels encountered during taking off jet airplanes reached 126 dBA for two half minutes time period. Th, audiometric, test showed that mean values of HTL(hearing threshold level) in exposed group at every frequency(500, 1,000, 2,000, 4,000, and 8,000 Hz were much lower than them of male and female control groups. And in old age groups, interaction of age and noise was observed at 8,000 Hz in both ears(p<0.05). Conclusively, aircraft noise does not appear to induce hearing loss directly in high frequency, but may decreased hearing threshold level by interaction of aging process and noise exposure. However, difference of mean values of exposed and control groups on blood pressure was not significantly. In psychological test, annoyance was the most severe psychological response to noise in exposed group, but mean value of BEPSI was not correlated with job duration in exposed group.

  • PDF

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.

Indoor PM2.5 Concentration Distribution and Health Risk Assessment according to the Implementation of a Seasonal Management System (미세먼지 계절관리제 시행 여부에 따른 실내 PM2.5 농도 분포 및 노출에 따른 건강위해성 평가)

  • Shin-Young Park;Dann-Ki Yoon;Hyeok Jang;Sung Won Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.218-227
    • /
    • 2023
  • Background: Since 2019, the Ministry of Environment has implemented a seasonal fine dust management system from December to March, targeting high PM2.5 levels with the aim of reducing PM2.5 concentrations and protecting public health. The focus of improving the seasonal management system lies in the atmospheric PM2.5 levels. Considering the primary goal of protecting public health, it is necessary to analyze the policy effects from an exposure perspective rather than a concentration-based approach. Objectives: This study aims to quantitatively assess the improvement of indoor PM2.5 levels and the health impacts of the seasonal management system by comparing the periods before and during its implementation in residential environments. Methods: PM2.5 concentrations within residential environments in a metropolitan area were measured using an optical particle counter (IAQ-C7, K-weather, Ltd, Korea) at one-minute intervals during the pre-implementation period (November 21~25, 2022) and during the implementation period (December 19~23, 2022). Based on the measured PM2.5 concentrations, a quantitative evaluation of cancer and mortality risks was conducted according to age and gender. Results: The results of comparing indoor and outdoor PM2.5 concentrations before and during the implementation of the seasonal management system showed a decrease of approximately 56.6% and 47.9%, respectively. Health risk assessments revealed that both the safety-limit-based and safety-target-based Hazard Quotients (HQ) exceeded the threshold of 0.1 for children under 19 years of age, both before and after the implementation. The mortality risk decreased by approximately 47.9% after the implementation, with children aged 0-9 showing the highest mortality risk at 0.9%. Conclusions: The findings of this study confirmed the positive health impacts of the seasonal management system across all age groups, particularly children under 19 who are more vulnerable to fine dust exposure.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

Experimental Study on Long-Term Performance Evaluation of Geosynthetic Strip Reinforcement (띠형 섬유보강재의 장기성능 평가를 위한 실험적 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyeung;Cho, Sam-Deok;Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2010
  • In this study, the long-term performance tests, which have extensibility, creep deformation, installation resistance and durability characteristic, is conducted to apply geosynthetic strip in field. The strength reduction factors using the test results are evaluated in order to calculate long-term design tensile strength. First, the creep deformation was evaluated by both the stepped isothermal method(SIM) and the time-temperature superposition(TTS) method. The creep reduction factor is reasonable to apply 1.6. Second, the result of installation damage test had little damage of yarn, which affected strength of reinforcement. Therefore, it can be analyzed that the installation damage of geosynthetic strip has little effect of long-term design tensile strength. Finally, the durability reduction factor considering chemical, biological and outdoor exposure resistance is reasonable to apply 1.1, which is considered the stability and economic efficiency of reinforced earth wall using geosynthetic strip.

  • PDF

Atmospheric Corrosion Process for Weathering Steel

  • Nagano, Hiroo;Yamashita, Masato
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • Steel is generally not corrosion resistant to water with formation of non protective rusts on its surface. Rusts are composed of iron oxides such as $Fe_3O_4$, $\alpha-$, $\beta-$, $\gamma-$and ${\delta}-FeOOH$. However, steel, particularly weathering steel containing small amounts of Cu, Ni and Cr etc., shows good corrosion resistance against rural, industrial or marine environment. Its corrosion rate is exceedingly small as compared with that of carbon steel. According to the exposure test results undertaken in outdoor environments, the atmospheric corrosion rate for weathering steel is only 1 mm for a century. Atmospheric corrosion for steels proceeds under alternate dry and wet conditions. Dry condition is encountered on steel surface on fine or cloudy days, and wet condition is on rainy or snowy days. The reason why weathering steel shows superior atmospheric corrosion resistance is due to formation of corrosion protective rusts on its surface under very thin water layer. The protective rusts are usually composed of two layer rusts; the upper layer is ${\gamma}-FeOOH$ termed as lepidocrocite, and inner layer is nano-particle ${\alpha}-FeOOH$ termed as goethite. This paper is aimed at elucidating the atmospheric corrosion mechanism for steel in comparison with corrosion in bulky water environment by use of empirical data.The summary is as follows: 1. No corrosion protective rusts are formed on steel in bulky water. 2. Atmospheric corrosion for steel is the corrosion under wetting and drying conditions. Corrosion and passivation occur alternately on steel surface. Steel, particularly weathering steel with small amounts of alloying elements such as Cu, Ni and Cr etc. enhances forming corrosion protective rusts by passivation.

Asbestos Content in Friable Sprayed-on Surface Material and Airborne Fiber Concentrations in Commercial Buildings (대형건물내 비고형 석면함유 건축자재에 의한 기중 석면오염 및 관리실태)

  • Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.137-146
    • /
    • 1995
  • Twenty(20) large commercial buildings located in Seoul with friable sprayed-on surface insulation material on ceilings were investigated for asbestos content in bulk material by polarized light microscopy and for airborne fiber concentrations in buildings by phase contrast microscopy. In addition, such building-related variables as building age, numbers of traffic, airflow, surface conditions of the ceiling, temperature, and humidity were studied for any correlation with airborne fiber concentrations. The results were as follows: 1. Chrysotile asbestos was found in two bulk samples with 3-5% content and with <1%in one sample out of total 20 bulk samples collected. Glass fiber and mineral wool were the two major constituents of the bulk samples. 2. The ceiling surfaces were very friable in 16 buildings and were relatively hard in 4 buildings. The friability of the surface material was dependent upon the type and the amount of binder that had been mixed with the sprayed-on surface material. 3. Airborne fiber concentrations were log-normally distributed and the geometric mean(geometric standard deviation) fiber concentrations in the underground parking lots, inside buildings, and outdoor ambient air were 0.0063(1.97)f/cc, 0.0068(2.29)f/cc, and 0.0033(2.36)f/cc, respectively. 4. No significant relationship of airborne fiber concentrations and all building-related variables studied except humidity was found. The results of this study suggest that the sprayed-on surface insulation material found in some commercial buildings may possibly be contaminated with asbestos. Since most of the ceiling surfaces surveyed were very friable and poorly maintained and the airborne fiber concentrations were relatively high, there is a possibility of asbestos fiber contamination in these buildings, particularly at those buildings with asbestos-contaminated surface material. Since poorly maintained surface conditions were thought to be a source of high airborne fiber concentrations, there is a urgent need of a systematic operation and maintenance program. Further study of non-occupational asbestos exposure in general population utilizing advanced analytical technique such as transmission electron microscopy is highly recommended.

  • PDF

Exposure Level of Airborne Bacteria in the University Laboratories in Seoul, Korea

  • Hwang, Sung-Ho;Yoo, Kyong-Nam;Park, Ji-Ho;Park, Dong-Uk;Yoon, Chung-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.355-361
    • /
    • 2009
  • This study evaluated the bacterial concentrations and affecting factors at the laboratories of a university in Seoul, Korea. Thirty-three samples of total airborne bacteria (TAB) and eighteen samples of gram negative bacteria (GNB) were collected from both microbiology laboratories (7) and chemistry laboratories (6). GM (GSD) of TAB and GNB concentrations were 194 (2.52) $cfu/m^3$, 24 (4.1) $cfu/m^3$, respectively. TAB concentrations in the chemical laboratories (GM (GSD): 193 (2.0) $cfu/m^3$) were not significantly different from those in microbial laboratories (GM (GSD): 202 (2.7) $cfu/m^3$, (p>0.05)). GM (GSD) of TAB concentrationsat the top of sink, the center of laboratory, and the front of ventilation ventilation device within laboratories, 182 (3.2) $cfu/m^3$, 217 (2.2) $cfu/m^3$, 176 (2.4) $cfu/m^3$, respectively, were not significantly different (p=0.48). Related factors were measured such as temperature, relative humidity, floor of laboratory, number of persons and laboratory area. TAB concentrations were significantly related to temperature (r=0.36, p<0.05), and the floor of laboratory and temperature were also significantly related (r=0.49, p<0.001). However, other factors such as relative humidity, number of persons and laboratory area did not show any significant relationship with TAB concentrations (p>0.05). TAB concentrations were affected significantly by cleaning frequency (p<0.001) and floor of laboratory (p<0.05). There was also a significant difference (p<0.01) between TAB indoor concentrations and TAB outdoor concentrations. However, other factors such as general ventilation did not affect TAB concentrations (p>0.05) in this study.

Airborne Fungi Concentrations and Related Factors in the Home (가정 내 부유 진균의 농도와 관련 요인)

  • Cho, YongMin;Ryu, SeungHun;Choi, Min Seok;Seo, SungChul;Choung, Ji Tae;Choi, Jae Wook
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.438-446
    • /
    • 2013
  • Objectives: This study was performed in order to determine airborne fungi levels in homes and find related factors that may affect airborne fungi concentration. Methods: Fifty homes were study subjects for measuring airborne fungi. For sampling airborne fungi, the impaction method on agar plates was used and samples were counted as colony forming units per cubic meter of air ($CFU/m^3$). In addition, information regarding housing characteristics and atopic disease in each home were collected via questionnaire. Results: The geometric means (GM) of airborne fungi concentrations in fifty living rooms and bedrooms were 68.03 and 62.93 $CFU/m^3$, respectively. The GM of airborne fungi concentration in atopy homes was 78.42 $CFU/m^3$. This was higher than non-atopy homes' 54.34 $CFU/m^3$ (p-value=0.051). In the results of the multiple regression analysis, outdoor airborne fungal concentration proved a strong effective factor on indoor airborne fungal concentration. Also, construction year, floor area of house, indoor smoking and frequency of ventilation were factors that showed a significant association with indoor airborne fungi concentration. Conclusions: The results of this study show that some housing and living characteristics may affect the development and increase of airborne fungi. In addition, exposure to airborne fungi may be a risk factor for the prevalence of childhood atopic diseases.

Evaluation Method for Improvement Efficiency of Indoor Air Quality in Residence (주택의 실내공기질 개선 평가 방법)

  • Yang, Won-Ho;Son, Bu-Soon;Yim, Sung-Kuk
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.255-263
    • /
    • 2007
  • Indoor air quality is the dominant contributor to total personal exposure because most people spend a majority of their time indoors. The purposes of this study were to evaluate the alternative method for improvement of indoor air quality in house after coating titanium dioxide ($TiO_2$) photocatalyst for interior part of the house using nitrogen dioxide ($NO_2$) multiple measurements. To evaluate the alternative method in indoor environment, daily indoor and outdoor $NO_2$ concentrations of an apartment and a detached house were daily measured for consecutive 21 days in winter and summer, respectively, Another daily 21 measurements were carried out after $TiO_2$ coating on wall paper of interior part in houses. All $NO_2$ concentrations were measured by passive filter badges. Indoor air quality models using mass balance are useful tool to quantify the relationship between indoor air pollution levels, ambient concentrations, and explanatory variables. Using a mass balance model and linear regression analysis, penetration factor (ventilation rate divided by sum of ventilation rate and decay rate) and source strength factor (emission rate divided by sum of ventilation rate and decay rate) were calculated. Subsequently, the decay constants were estimated. In this study. magnitude of improvement of indoor air quality could be evaluated by decay constant.