• Title/Summary/Keyword: Outdoor Air Conditioning Energy

Search Result 146, Processing Time 0.024 seconds

Performance Evaluation of Hybrid Solar Air-Water Heater when the Heated Air is used as Inlet Air during Air and Water is Heated Simultaneously (가열 공기 유입에 따른 복합형 태양열 가열기 공기-물 제조 성능에 관한 연구)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the performance of hybrid solar air-water heater when the heated air was used as inlet air was investigated during air and liquid were heated simultaneously. Temperature difference between inlet air and ambient was set as $0^{\circ}C$, $13^{\circ}C$ and $22^{\circ}C$ and it was maintained during the daily operation. As a result, thermal efficiency of liquid heating was increased when the inlet air temperature was increased and heat gain of the water in heat storage tank was also increased with increment of temperature difference between inlet air and ambient temperature. On the contrary to this, the decrement of air heating efficiency and total efficiency of collector was confirmed with increment of inlet air temperature and it is considered that heat gain of liquid side is lower than heat loss of air side that occurring by using heated air as inlet air of collector. So, from these results, maximum temperature that the liquid in heat storage tank can reach was expected to increase if the return air or any heated air was used as inlet air. But air and total efficiency of hybrid solar air-water is decreased, so using outdoor air as inlet air is considered as better way on perspective of using of solar thermal energy by hybrid solar collector. However, it is hard to conclude that using outdoor air is better than heated air on the perspective of energy saving of building because the performance of heat storage performance was increased even air and total thermal efficiency was decreased, so the necessity of more profound consideration about these result in further research was confirmed for putting the hybrid solar air-water heater to practical use.

Experimental study of correlation between aqueous lithium chloride-air temperature difference and mass transfer performance

  • Fatkhur, Rokhmaw;Agung, Bakhtiar;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.195-198
    • /
    • 2011
  • Liquid desiccant material, such as lithium chloride (LiCl) or halide slits are usually used on air conditioning application for controlling the humidity of high Outdoor Air (OA). Solar energy is usually used to heat the liquid in regeneration process of those desiccant. The mass transfer it self is driven by the temperature different between the liquid desiccant and the input air. This experiment study is analyzing the characteristic of the aqueous LiCl-air temperature different in variance specific gravity, especially in range of temperature different using the solar energy as the heat generator. The experiment has done by variating the concentration of the LiCl with specific gravity 1.210 and 1.150. For the comparison the pure water is also used. The result show that the mass transfer rate is increased in every variation as the increases of the temperature different, and the weeker aqueous solution of the LiCl the highest mass transfer coefficient.

  • PDF

Evaluation of Thermal Environment on Air-barrier Type Perimeter-less System with Underfloor Air Conditioning System (바닥급기 공조시 에어베리어형 페리미터레스 공조시스템의 실내 열환경 평가)

  • 김용경;이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.346-351
    • /
    • 2003
  • This paper aims at suggesting design guidelines for a perimeter-less HVAC system that contributes energy savings. Perimeter-less HVAC system is one that relieves difficulties fuck as handling mixing loss, uneven radiative environment, and maintenance and repair. It prevents heat load gained through window and outdoor wall without modifying a previously equipped building skin system. In this paper, we performed several kinds of CFD (computational fluid dynamics) cases through numerical simulation to obtain an optimized perimeter-less design, and then we conducted a large-scale model experiment to see how the push-pull air flow would handle indoor heat to obtain an optimized perimeter-less design.

Performance Characteristics of the Desiccant Cooling System in Various Outdoor and Load Conditions (외기조건에 따른 제습냉방시스템의 성능 특성)

  • Lee, Dae-Young;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.623-628
    • /
    • 2009
  • Desiccant based air conditioning system offers a promising alternative to conventional one using vapour compression refrigeration for energy saving and greenhouse gas reduction. It is a heat driven cycle which has high potential for the use of low grade heat source such as the waste heat from the cogeneration plant or the solar thermal energy. In this study, the cooling performance of a desiccant cooling system incorporating a regenerative evaporative cooler was characterized in various operation conditions through numerical simulation. The cooling capacity and COP were evaluated at various outdoor conditions, regeneration temperatures, and supply flow rates. Based on the performance characteristics, the optimal control scheme was discussed to minimize the cooling cost at part load condition.

  • PDF

Development of Standard Weather Data Correlation of Seoul

  • Kim, Seong-Sil;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.199-208
    • /
    • 2003
  • Standard temperature and absolute humidity weather data correlations of Seoul for dynamic energy simulation have been developed regressing the measured data compiled by the Korea Meteorological Adminstration during a l0-year period from 1991 to 2000. The mathematical equations can generate consistent daily and yearly variations of outdoor weather data unlike the measured data which may show abnormal behavior. Considering that each hour of the day follows a certain yearly pattern, 24 correlations are developed for each hour of the day. The derived simple mathematical equations can be used for estimating outdoor temperature and humidity conditions for any arbitrary time of the year.

Measurement and Simulation of Heating Energy for Apartments with District Heating (지역난방 아파트에 대한 난방에너지 실측 및 시뮬레이션)

  • Lee, Eun Ju;Lee, Doo Young;Hong, Hiki;Kim, Young Kyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.572-578
    • /
    • 2014
  • Heating energy was measured in an apartment housing unit with a district heating system, varying the kind of hot water distributors. Ondol coils passing through a living room raised the temperature of the room where the heating was turned off. Including this characteristic of Ondol heating into the modeling, we performed simulations and showed a verification by comparison with the results of measurements. As a result, a main flow control method, which changes hot water flow rate supplied to a housing unit according to the thermal load, can reduce the supplied flow rate and lower the return temperature, compared with a constant flow method. That can result in decreased heat loss in utility-pipe conduits even though the heating energy supplied is almost the same. An outdoor reset control that raises the temperature of the supplied hot water if the outdoor temperature falls has the effect of a quicker response in heating than the reduced flow rate and return temperature.

Evaluation of Floor Heating Performance and Design Criteria for Operating an Outdoor Swimming Pool During Winter : A Case Study (동절기 옥외 수영장 시설의 운영을 위한 바닥난방 성능평가 및 설계기준에 관한 사례연구)

  • Cho, Jinkyun;Woo, Kyunghun;Kim, Jin-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.289-296
    • /
    • 2017
  • This study aimed to analyze the deck floor heating system of an outdoor swimming pool in terms of the thermal capacity/output and the surface temperature distribution based on the outdoor temperature, to design for anti-freezing during winter. Through the transient heat transfer simulation with PHYSIBEL and theoretical equations, the surface temperature distribution of the floor heating system at two outdoor conditions in Jeju, were calculated and evaluated. The results indicate that the specific thermal output required for maintaining $4^{\circ}C$ surface temperature at the design outdoor temperature of $0.1^{\circ}C$, was about $90W/m^2$. This performance analysis can be applied for future design criteria, including optimizations of system capacity and size.

A Theoretical Evaluation of the Effect of Refrigerant Charge on the Performance of Vapor-Compression Air-Conditioning System (증기압축식 에어컨의 냉매 충전량에 따른 성능 예측)

  • 이경중;방광현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.486-493
    • /
    • 2000
  • A theoretical model for the transient performance of vapor-compression air-conditioning system has been developed to evaluate the influence of the refrigerant charge on the system performance. A set of mass and energy equations for the simulation of the heat exchangers and the capillary tube and a polytropic compression model for the compressor are used. The present model successfully predicts the transient behavior of the vapor-compression air-conditioner from the startup. As the refrigerant charge is increased, both the evaporating and condensing pressures increase gradually, and the cooling rate and the COP show a maximum in the range of 0.75-0.8 kg of refrigerant charge. This amount of refrigerant mass is determined to be the optimum charge of the model system. Also, the effect of outdoor air temperature on the optimum refrigerant charge is discussed.

  • PDF

Performance Variation of the Air Curtain for Various Discharge Angles in Feating Space (난방공간에서 에어커튼의 토출각도 변화에 따른 성능 변화)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2010
  • Air curtains are widely used for gates of shopping mall, warehouse, cold stores and refrigerated display cabinets. The purpose of the air curtain is to reduce the infiltration of outdoor air and heat loss from the air conditioning space to ambient air. The discharge angle of air curtain is very important as the sealing efficiency is affected by it. This paper presents a performance of single jet air curtain in heating space when the discharge angle of nozzle changes. A numerical simulation is used to study the influence of various parameters on the efficiency of the downward-blowing air curtain device which is installed inside of the wall above the door. The performance of the air curtain is evaluated by sealing efficiency which provides the assessment of the energy savings. A condition of discharge angle that has the highest sealing efficiency is proposed.

EFFECT OF DESIGN PARAMITERS ON SEASONAL PERFORMANCE OF AN A/C SYSTEM (공기조화기의 설계인자가 계절성능에 미치는 영향)

  • Park, Y.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.239-241
    • /
    • 2010
  • Performance evaluation for an air conditioning system is conducted at a specified test conditions. One is low temperature and the other is high temperature condition. Most of the manufactures tried to improve the performance at higher outdoor temperature. One of the reasons is that the customer wants to get ore capacity at high temperature climate. To cope with these kinds of demand, manufactures are tried to achieve higher capacity at high temperature with minimum power consumption even with same size of the system. Consequently, previous studies on performance of the air conditioning system are focused on capacity and performance improvement at high outdoor temperature.

  • PDF