• 제목/요약/키워드: Outcoupled efficiency

검색결과 2건 처리시간 0.016초

유기 발광 소자의 광추출 효율 향상을 위한 마이크로 렌즈 어레이의 시뮬레이션 (Simulation of Microlens Array for the Improvement of Outcoupled Efficiency of Organic Light-emitting Diodes)

  • 황덕현;김혜숙;이원재;이승훈;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.745-753
    • /
    • 2013
  • Performance of organic light-emitting diodes incorporating microlens array was simulated using a Light Tools software. Use of microlens array can help the light to escape out of the device. We simulated a reference device that is consisted of reflection layer, emissive layer, and flat transparent substrate. And in this reference device, outcoupled efficiency of 22% was obtained. Several shapes of microlens were applied such as hemisphere, trapezoid, cone, and rectangular parallelepiped. The results showed the improvement of outcoupled efficiency of the device with microlens compared to that of the reference one. And from the analyses of the simulated data, the obtained appropriate shape of microlens is hemisphere, and the improvement of the device with hemispherical lens is 57% higher than that of the reference one.

마이크로 렌즈 어레이를 이용한 유기 발광 소자의 광추출 효율 향상에 관한 연구 (Improvement of Outcoupled Light Efficiency of Organic Light-emitting Diodes with a Use of Microlens Array)

  • 김혜숙;황덕현;홍진웅;송민종;한원근;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.307-311
    • /
    • 2014
  • Because of a waveguiding effect and total internal reflection caused by a difference in refractive indices, only 20% of generated light is emitted to the air and the rest is trapped or absorbed in the device. An improvement of outcoupled efficiency of organic light-emitting diodes was studied using a microlens array. Mold of microlens array was fabricated by using photo-lithography with the AZ9260 photoresist, and the microlens array was formed onto the glass substrate using the UV curing agent named ZPU13-440. Device structure consists of microlens/glass/ITO/TPD/$Alq_3$/LiF/Al. It was found that there is an improvement of external quantum efficiency by about 20% at the same current density for the device with the microlens array compared to that of the reference one. Simulated outcoupled efficiency shows the improvement by about 20% for the device with the microlens array compared to that of the reference one. These results are consistent with the experimental ones.