• Title/Summary/Keyword: Outboard

Search Result 49, Processing Time 0.193 seconds

Develop of BLDC Electric Motor for Outboard Motor Drive (선외기 구동을 위한 BLDC 전기모터 개발)

  • Shin, Cheol-Gi;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.766-770
    • /
    • 2013
  • This paper tried to develop a BLDC electric motor securing the 800 W-level watertight structure for driving the outboard motor. For this purpose, this paper developed a high-efficient controller-integrating BLDC electric motor system for underwater propulsion and designed and developed a triple watertight structure. Besides, this study developed a outboard motor integrating motor, propeller and controller based on the production of a controller for BLDC motor which can the speed control by selecting low-voltage, high-current power element. The characteristics of developed outboard motor were 24 V input voltage, over 800 W motor output, and max. 3,000 rpm motor, and 84.9% motor efficiency, and the developed outboard motor could secure the watertight structure in 5 m in water depth.

A Study on Electric Power Propulsion System for Small Ship Outboard (소형선박 선외기용 전기동력 시스템 연구)

  • Park, Joo-Sik;Won, Jun-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • Recently, the outboard engine system of internal combustion engine is widely used in the field of small ship propulsion. However, the internal combustion engine has serious problems of energy depletion and environmental problems, so electric propulsion methods are being studied. In this paper, we have developed important motors and controllers of electric propulsion system for small marine outboard motors. The motor design was performed through the motor characteristics analysis method, and the 30Kw system was developed through the BEMF processing circuit and the power conversion circuit by the embedded microprocessor. This study was carried out through government supported projects and achieved quantitative targets through accredited institutions.

Performance Evaluation of 20 HP Outboard Motor in Consideration of Driving System Applied to Electric-Propulsion Boat (전기추진 선박에 적용되는 20HP급 전기추진 선외기 구동시스템의 성능평가에 대한 고찰)

  • Moon, Byung Young;Shin, Kuk Hwan;Lee, Ki Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.518-526
    • /
    • 2018
  • As a new technical approach, this paper introduces a method for improving an electrically propelled outboard motor in consideration of the driving system applied to an electric-propulsion boat with solar cell energy. The most efficient model for a drive shaft, propeller shaft, and bevel gear was suggested and examined with respect to the results of test operation in prototype mode. Furthermore, this research included a performance evaluation of the manufactured prototype to acquire the purposed quantity value and the development items. After manufacturing the desired prototype of an electrically propelled outboard motor, the maximum sail time, thrust force, noise, and weight were evaluated in a performance test. An additional test in relation to the maximum sail speed (knots) of the completed prototype was conducted using a sea trial evaluation to acquire the optimum quantity.

Development of Outboard Type Contactless Rudder Sensor and Automatic Steering System (선외기 선박용 비접촉 러더센서 및 자동조향장치 개발)

  • Kim, Ho-Young;Bang, Junho;Kim, Tae-Hyung;Ryu, In-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1285-1290
    • /
    • 2017
  • In this paper, we developed a core module of the steering system to control and operate the outboard ship with the automatic steering system, and implemented it as a complete integrated system. In particular, this paper presents the problem of the rudder sensor used in the existing system and implements the contactless rudder sensor as an improvement. In the case of existing rudder sensors, there is a problem that safety operation and economic loss of the ship operation is caused by malfunction due to immersion during use in outboard vessels. However, the proposed rudder sensor is separated from the rotary shaft to constitute a contactless type, and a circular magnet is fixed so that the rotating value can be detected and used by the Hall sensor to completely solve the flooding problem. As a result of the characteristic test, the voltage value from 1.8V to 3.2V was obtained between $-35^{\circ}$ and $+35^{\circ}$ degrees and satisfied the reference value. The proposed rudder sensor was mounted on the outboard ship, and all the performance of controller system were checked. According to the system proposed in this paper, it satisfies the Korean Standard Specification, which defines the speed of convergence in 30 seconds by switching from left to right in 7 seconds. We also confirmed that automatic steering was performed by comparing the compass sensor with the destination in the integrated controller at the start-up.

A Study on the Method for Efficiency Improvement of 5HP Electric Thrusting System for Outboard Motor (선외기용 5HP급 전동 추진시스템의 효율 개선 방안에 관한 고찰)

  • Lee, Sung-Hyung;Jo, Won-Young;Kim, Byong-Kuk;Kim, Hyen-Woo;Kang, Min-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.476-483
    • /
    • 2012
  • This paper introduces the method for efficiency improvement of 5HP electric thrusting system for outboard motor. The most efficient model of motor and propeller is suggested and verifying its performance through the prototype model. Also, We show improvement of 20% compared to existing system through the equipped test.

Flutter Characteristics of a Morphing Flight Vehicle with Varying Inboard and Outboard Folding Angles

  • Shrestha, Pratik;Jeong, Min-Soo;Lee, In;Bae, Jae-Sung;Koo, Kyo-Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • Morphing aircraft capable of varying their wing form can operate efficiently at various flight conditions. However, radical morphing of the aircraft leads to increased structural complexities, resulting in occurrence of dynamic instabilities such as flutter, which can lead to catastrophic events. Therefore, it is of utmost importance to investigate and understand the changes in flutter characteristics of morphing wings, to ensure uncompromised safety and maximum reliability. In this paper, a study on the flutter characteristics of the folding wing type morphing concept is conducted, to examine the effect of changes in folding angles on the flutter speed and flutter frequency. The subsonic aerodynamic theory Doublet Lattice Method (DLM) and p-k method are used, to perform the flutter analysis in MSC.NASTRAN. The present baseline flutter characteristics correspond well with the results from previous study. Furthermore, enhancement of the flutter characteristics of an aluminum folding wing is proposed, by varying the outboard wing folding angle independently of the inboard wing folding angle. It is clearly found that the flutter characteristics are strongly influenced by changes in the inboard/outboard folding angles, and significant improvement in the flutter characteristics of a folding wing can be achieved, by varying its outboard wing folding angle.

Development of a Small Floating Outboard Type Water-Jet Propulsion System (부유식 일체형 소형워터제트 추진시스템 개발)

  • Jeong, Jae Hoon;Yi, Chung Seob;Lee, Chi Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-47
    • /
    • 2016
  • This paper presents the development of a floating outboard type of compact water jet propulsion system. The planning case of the water jet system is developed by performing precision processing after manufacturing FRP (Fiber Reinforced Plastics) from plug mold casting. This system is composed of an intake, impeller, diffuser, reverse bucket, and main shaft. In addition, a rebuilt engine was applied through marine engineering. The water jet propulsion system performance was verified to discharge a maximum $0.29m^3/s$ of flow rate and 37 m/s of flow velocity in a test pool on land. A field test was performed by installing the water jet propulsion device on board a ship that was tested off the coast of Korea. The weight of the hull, engine, and other equipment was approximately 1.2 tons, and the sailing speed was a maximum 22 knots at 3,600 rpm.

Flutter Characteristics of Double-Swept Composite Wings (이중 후퇴각을 갖는 복합재 날개의 플러터 특성)

  • Koo, Kyo-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1228-1233
    • /
    • 2000
  • A new planform of a wing having two sweep angles is proposed to enhance the aeroelastic stability of a swept-forward wing. The double-swept wing has two sweep angles with inboard wing swept-back and outboard wing swept-forward. Aeroelastic analysis is performed with the finite element method to model wing structure and the doublet point method to predict aerodynamic loads. The sweep angle of the inboard wing is varied in this analysis while the outboard wing is swept forward to a pre-selected amount. The results show that the aeroelastic stability can be drastically enhanced by adjusting the sweep angle of the inboard wing. The effect of the fiber orientation in the double-swept composite wing is studied and the proper ply angle is identified to maximize critical speed.

  • PDF